
AD-RI66 08i A COMPUTABILITY THEORY FOR DISTRIBUTED SYSTEIIS(U) TEXAS i/i
UNIV AT RUSTIN DEPT OF COMPUTER SCIENCES J MISRR
03 MAR 86 N888i4-85-K-857

UNCLASSIFIED F/G 9/2 U

EEmmons-moE

I F-mmmmmo

IIIIIIIIIIIIII
MENNENllll

1111 1. I~128
~" ,se 132=

~0 L.I L
mL

w 111

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS - 1963 - A

3w

mm

00

CIDJCD

a W

O Final Technical Report

Navy Grant N00014-85-K-0057

Office of Naval Research

k Computability Theory for Distributed Systen

-LECTE ~

APR) 7 W6.

CDEPARTMENT OF COMPUTER SCIENCES
THE UNIVERSITY OF TEXAS AT AUSTIN

AUSTIN, TEXAS 78712

A APPowe for public releoasel

IDintlon Unimied i

Final Technical Report

Navy Grant N00014-85-K-0057

Office of Naval Research

A Computability Theory for Distributed Systems

Principal Investigator: Jayadev Misra

Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712

March 15, 1986 "TIC

DKBTDIDO'TIN STATEMENT A AIApproved for public releco.;
D~uribution Unlimited

Final Report: N00014-85-K-0057 " 1

Summary of Work Accomplished -

The work proposed this grant was to develop theories which will contribute
to the design and: sis of distributed systems. The major emphasis of the proposed
research was study how and why processes in a message passing system need to com-
municate. he research results have far exceeded our initial expectations: in the following
pages we describe the summary of the work performed and what these results imply for
the development of distributed systems. There have been two journal papers (Distributed
Computing, Springer-Verlag), one conference paper (Symposium on Principles of Program-
ming Languages '86), and several technical reports published under this grant.

How Processes Learn [4,1]

Processes in diestributed systems communicate with one another exclusively by sending
and receiving messages. A process has access to its state but not to the states of other
processes. Many distributed algorithms require that a process determine facts about the
overall system computation. In anthropomorphic terms, processes "learn" about states
of other processes in the evolution of system computation. This work is concerned with
how processes learn. We give a precise characterization of the minimum information flow
necessary for a process to determine specific facts about the system.

The central concept in our study is that of isomorphism between system computa-
tions with respect to a process: two system computations are isomorphic with respect to
a process if the process behavior is identical in both. In anthropomorphic terms, "sys-
tem computations are isomorphic with respect to a process," means the process cannot
distinguish between them.

Many correctness arguments about distributed systems have the following operational
flavor: "I will send a message to you and then you will think that I am busy and so
you will broadcast...". Such operational arguments are difficult to understand and error
prone. The basis for such operational arguments is usually a "process chain": a sequence
of message transfers along a chain of processes. We advocate nonoperational reasoning.
The basis for nonoperational arguments is isomorphism; we relate isomorphism to process
chains. Algebraic properties of system computations under isomorphism provides a precise
framework for correctness arguments.

S.It has been proposed that a notion of "knowledge" is useful in studying distributed

computations. In earlier works, knowledge is introduced via a set of axioms. Our definition
of knowledge is based on isomorphism. Our model allows us to study how knowledge is

gained" or "lost". One of our key theorems states that knowledge gain and knowledge loss
both require sequential transfer of information: if process q does not know fact b and later,
p knows that q knows b, then q must have communicated with p, perhaps indirectly through
other processes, between these two points in the computation; conversely, if p knows that q
knows b and later, q does not know b then p must have communicated with q between these
two points in the computation. In the first case, the effect of communication is to inform

- *.V : - - - -

Final Report: N00014-85-K-0057 2

p of q's knowledge of b. Analogously, in the second case, the effect of communication is to
inform q of p's intention of relinquishing its knowledge (that q knows b). GeneralizationsI of these results for arbitrary sequences of processes are stated and proved as corollaries of
a general theorem on isomorphism.

We use the results alluded to in the last paragraph for proving lower bounds on the
number of messages required to solve certain problems. We show, for instance, that there
is no algorithm to detect termination of an underlying computation using only a bounded
number of overhead messages.

We have extended this work in [1] to deduce facts from incomplete information.

Reaching Agreement in Faulty Distributed Systems [2,3]

Reaching agreement in a faulty distributed system, also known as Byzantine agree-
ment, has been a central problem in fault-tolerant distributed computing. Our interest in
studying this problem was to develop theories and conditions for fault tolerance in var-
ious different situations. We studied an important algorithm due to Fischer, Lynch and
Fowler ("A Simple and Efficient Byzantine Generals Algorithm," Proceedings of the 2nd
Symposium an Reliability in Distributed Software and Database Systems, July, 1982) and
proposed a proof of it along traditional lines of program proving. This work has resulted in
a very compact version of this algorithm. Another important result, again due to Fischer
and Lynch, shows that agreement requirements synchrony: in an asynchronous system,
agreement on a common value cannot be reached even if only one process fails. We pro-
vided a proof of this result using a set of simple axioms. Our proof also includes a number
of key lemmas and clarifies the relationship between agreement and decision making by a
process.

An Abstract Concurrent Model and Its Temporal Logic [5]

{The work of Professor Pnueli was supported by this grant}

We advance the radical notion that a computational model based on the reals provides
a more abstract description of concurrent and reactive systems, than the conventional
integers based behavioral model of execution sequences. This model is studied in the
setting of temporal logic, and we illustrate its advantages by providing a fully abstract
temporal semantics for two simple concurrent languages, and examples of specification
and verification of concurrent programs within the real temporal logic defined here. It is
shown that, by imposing the crucial condition of finite variability, we achieve a balanced
formalism that is insensitive to finite stuttering, but can recognize infinite stuttering, a
distinction which is essential for obtaining a fully abstract semantics of nonterminating
processes. Among other advantages, going into real-based semantics obviates the need for
the controversial representation of concurrency by interleaving, and most of the associated
fairness constraints.

Final Report: N00014-85-K-0057 3

Systolic Arrays as Programs [8]

3 Systolic algorithms represent a form of parallel programming in which a number of
nodes (machines) are interconnected by a set of lines. A node reads from its input lines
and writes into its output lines on specific clock pulses and there are only a few kinds of
nodes each doing different kinds of processing. Systolic algorithms are typically described
by pictures of the interconnections of nodes, descriptions of processing at each node in
the picture and data movements among nodes at several successive steps. A pictorial
representation guarantees that the algorithm can be implemented on a VLSI chip without
wire crossings, for instance. However, a picture makes it difficult to argue about the
correctness of the algorithm, explore alternate designs or even develop an algorithm in a
systematic manner.

We propose to view systolic algorithms an programs and hence, apply traditional pro-
gram development techniques, based on invariants, in their design. We carry out the
developments for matrix multiplication of band matrices and L-U decomposition of a band
matrix.

I

Accesion F:or',

NTIS CRA&W t
~~DTIC TAB "

Unannounced 0]
Justification1............. .

Distiibution[

Availability Codes

Avail aod /or
Dist Special

I-,

0 3O4L

|V

Final Report: N00014-85-K-0057 4
Technical Reports

(1) "Learning from Incomplete Information," Technical Report, Department of Computer
Sciences, University of Texas, September 1985, (K. Mani Chandy and Jayadev Misra).

(2) "Understanding a Byzantine Algorithm,* TR-85-20, Department of Computer Sci-
ences, University of Texas, September 1985, (Jayadev Misra).

(3) "On the Non-existence of Robust Commit Protocol," Technical Report, Department
of Computer Science, University of Texas, November 1985, (K. Mani Chandy and
Jayadev Misra).

Publications

(4) "How Processes Learn," Proceedings of the Fourth Annual ACM Symposium on Prin-
Rciples of Distributed Computing, Minaki, Ontario, Canada, August 5-7, 1985. Also

appeared in Journal of Distributed Computing, Vol. 1, No. 1, pp. 40-52 (Springer-
Verlag), (K. Mani Chandy and Jayadev Misra).

(5) "A Really Abstract Concurrent Model and its Temporal Logic," Proceedings of the
Thirteenth Annual ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages, St. Petersburg, Florida, January 13-15, 1986, pp. 173-183, (Howard
Barringer, Ruurd Kuiper and Amir Pnueli).

(6) "Systolic Algorithms as Programs," to appear in the special issue on VLSI, Journal of
Distributed Computing, Vol. 1, No. 3, (K. Mani Chandy and Jayadev Misra).

I

Learning from Incomplete Information

(Extended Abstract)

K. Mani Chandy

Jayadev Misra

Department of Computer Sciences

The University of Texas

Austin, Texas 78712
(512)471-4353

12 September 1985

This work was supported by a grant from the Office of Naval Research under grant
number ONR N00014-85-K-0057.

*

"When you have eliminated the impossible, whatever remains, however im-
probable, must be the truth."1

Introduction

Deduction, according to Holmes, is based upon: (1) plausibilities, (2) clues, and (3)
elimination of impossibilities given the clues. Holmes starts his detection with a set of
possible scenarios, i.e., a model of the crime. Then he gathers clues and eliminates
scenarios that are incompatible with his clues. Our view of knowledge is similar. We
start with a model (set of possible scenarios), we make certain observations of the sys-
tem and thereby, we eliminate scenarios that are incompatible with the observations. In
this paper, we are concerned exclusively with deduction, i.e., elimination of scenarios in-
compatible with observations. We do not address the question of how the model is pos-
tulated in the first place, nor with methods for making observations.

For a variety of reasons, one cannot always observe everything one wants to.
Deductions are necessary precisely because observations are often incomplete. For ex-
ample, reasons for an aircraft crash has to be deduced from the information in voice
and data recorders, control tower recordings and memories of survivors. Software is
debugged by collecting values of certain key variables over some points in execution and
this partial observation may enable a programmer to deduce that the program has an
error, i.e., program behavior is incompatible with a correct implementation. Fault
detection and location in electronic circuits are often carried out by observing the volt-
age levels on some specified lines; it is usually too expensive to probe all lines. A design
task is to identify the lines that may be probed and make those lines accessible. This is
akin to deciding, at the design stage, what must be observable to gain certain kinds of
knowledge. We propose a model of computation which captures the essence of partial
observations.

Given a partial observation, all scenarios that could have produced that obser-
vation are isomorphic with respect to that observation; all other scenarios can be
eliminated from further consideration. In general, if more is observed, more scenarios
can be eliminated and hence more knowledge about the system can be gained.

We propose a general model of discrete systems in terms of events and relation-
ships among them. Our model appears to be general enough to encompass all known
distributed systems including the usual message passing and shared variable models.
We define the notion of isomorphism among computations with respect to a process,
i.e., two computations are isomorphic with respect to a process, if the process cannot

ISherlock Holmes in The Sign of the Four, [Chapter 61, by Sir Arthur Conan Doyle, [1890).

2

distinguish between the two computations. Our fundamental theorem relates isomor-
phism to communications among processes in a computation. We define knowledge
using isomorphism and show the types of communications needed to gain or lose
knowledge. We postulate that some pairs of events on a process may not be distin-
guishable to it. Thus, a process may know that a certain type of event has occurred,
but it may not be able to say which particular event of that type has occurred. This is
a mechanism for capturing the notion of partial observation.

Model

A system is a set of events E and two binary relations -- and - on events,
where - is a partial order and - is irreflexive and symmetric. A computation is any
sequence of events z satisfying the following two conditions. For any e,e' in E-

1. precedence: if e -. e' and e' is in x then e occurs prior to e I in x.

2. exclusivity: if e e 1 than at most one of e,e is in x.

An event represents a discrete action; e - a I means that event e I can occur only
after event e has occurred; e - e I means that both e,e ' cannot occur in the same com-
putation. Note that, if e --+ e' and e - e' then e I can occur in no computation.

Our definition of system is given independent of the processes at which an event
may take place. A number of important properties of computations, such as prefix
closure etc., may be proven from our definition. However, an adequate theory of
knowledge requires us to postulate processes which are not omniscient. We do so next.

Each process has a set of invisible events; these are the ones in which it presum-
ably does not participate and whose occurrences it cannot observe; remaining events are
visible to it. Furthermore, a process may be unable to distinguish between some of its
visible events; this captures the notion that what a process can observe is an abstraction
of the events in the underlying computation. Formally, a process is a pair (A,17) where
A C E and 7 is a partition of A. Only the events in A are visible to the process and
the partition 7 groups events in A into equivalence classes such that all events in an
equivalence class are indistinguishable to the process. A process can only observe the
equivalence class to which a visible event belongs, but not the event itself.

We note that an event may be visible to several processes; this denotes that the

event is to take place simultaneously at all these processes. Furthermore, two events
may be indistinguishable to a process p and distinguishable to another process q. We
can model usual message passing systems by considering both active processes and chan-
nels as processes in our system. Similarly, shared variable systems may be modelled by
considering active processes and shared variables as processes. It is impgrtant to note
that we can define any pair (A,7) to be a process. Our choice is dictated by what kinds
of knowledge we wish to study. For instance, if we want to deduce the operation of a

-- S

3

message passing system from the messages transmitted in the system, we will consider
the channels (along which messages are transmitted) as processes.

Notation:: Unless otherwise stated, we use z,y,z to denote computations and p,q,r for
processes; these symbols may be used with superscripts or subscripts also. The con-
catenation of sequences z and y will be denoted by (x;y). For sequences z,Y,x < y
denotes that z is a prefix of y; in this case (z,y) denotes the suffix of y obtained by
deleting z from y. The empty sequence will be denoted by null.

The following example demonstrates how a process may be unable to distinguish
some of its visible events.

Example

A mutual exclusion algorithm between two processes p,q is implemented by means
of a token: only the process holding the token may enter a critical section. The deci-
sion by a process to enter its critical section is nondeterministic. If the token holder
wishes to enter its critical section then it does so and sends the token to the other
process upon completion of the critical section execution; if it decides not to enter the
critical section, then it sends the token to the other process immediately. A portion of
the system is shown in figure 1.

The set of events E = {a,b,c,d,e}. The relation --+ is {(a,c), (c,d), (a,d), (b,e)} and
the relation - is {(a,b), (b,a)}. The important point to note is that the process receiv-
ing the token, i.e., with visible events d and e, cannot deduce whether the other process
did enter its critical section prior to sending it the token, i.e., events d,e are indistin-
guishable to this process. Hence this process is defined by (A,/I) where A = {d,el and
17 = {{d,e}}. The process sending the token is ({a,b,c}, {{a), {b), {c})). The process
receiving the token views the receive as a single event, yet we model it as two distinct
events d,e and represent the fact that the process cannot distinguish between them by
having them in the same equivalence class.

Results

We simplify the discussion of distinguishability by assuming that each process has
an associated set of colors, one distinct color for each equivalence class in its partition
and distinct processes have no common color. Every event has all the colors of the
various equivalence classes that it belongs to, corresponding to the processes to which it
is visible. In any computation z, a process p cannot observe the invisible events and for
each visible event it can only observe the color of the event. This is captured in the fol-
lowing definition.

Definition:: For a process p and a computation z, p's observations of x.!the sequence
of colors of the visible events of p in z.

I

4

II

: pocs I __________ process

d7 ecv eprocess

holding the token without the token

~Figure 1:

~All of our definitions and results are easily generalized when individual processes

~are replaced by sets of processes. This is because, processes {p,q} together form a
process whose visible events are the ones visible to either p or q and two visible events

, of this process are indistinguishable if and only if they are visible and indistinguishable
to both p,q.

' Definition:: A sequence z has a process chain <p,q,...,r> if and only if there exists a

subsequence of events, e,e',...,e " , not necessarily distinct, in x such that (1)
~e -,e' - ...--.ce" and (2) eis on p, e'isq,...,e" ison r.

A process chain as above indicates that in the given computation p informs q and

SI later qinforms ... ,r is informed.
AlDefinition:: For any process p, [pu is an equivalence relation between computations

~defined as follows:

pc [p] o mean p's observations of z -i p's observations of q. i

ofti rcs r nitnusal fadol fte r iil n nitnusal

Intuitively, x [pJ y,~ to be read as x is isomorphic to yt with respect to p, means that
p cannot distinguish between computations x,y. Isomorphism is the basis for our work;
p's knowledge of the system has to be identical for both x,i,.

Definition:: x [p q ... r] y means there exists z such that,

x [p] zand z[q... r]y.

Intuitively, x [p q] y denotes that there is a computation z which p cannot distin-
guish from x and q cannot distinguish from y. The relation [p q] is the relational
product of [p] and [q]. This is generalized to arbitrary sequence of processes in
x[p q ... r] y. A number of algebraic properties of isomorphism relations appear in [1].
Next, we present our fundamental theorem which relates process chains and isomor-
phism relations.

Theorem 1: (Fundamental Theorem) Let x < y. For any sequence of processes
p,q,...,r, there is a process chain <p q ... r> in (x,y) or x [p q ... r] y.

Process chains capture our intuitive notion of information transfer among
processes. The theorem given above allows us to consider information transfer (or its
absence) in algebraic terms using only isomorphism. relations. In fact, our theorems
about knowledge gain and loss are corollaries of this theorem. This theorem can be
strengthened when every Visible event of a process has a unique color, i.e., when a
process can distinguish among all its visible event.

Theorem 2: Let p,q,...,r be processes which have unique colors for all their visible
events, i.e., every equivalence class for each of these processes has exactly one event in
it. Then, for any x,y where x < y, x[p q.. r] y if and only if there is no process chain
<p q.. r> in (x,y).

Now, we define knowledge predicates. Let b be any predicate whose value at a
1~'computation x is, b at x. We define a predicate p knows b.

Z7.

Definition:: (p knows b) at x = for all y: x [p] y b at yt.

Intuitively, p knows b at x if b is true for all computations which p cannot distin-

guish from x.

Note that b may itself be a knowledge predicate. The knowledge axioms appear-
ing in [21 may be derived from this definition. It may be easily seen -that (p knows
(q know. b)) at x = for all y: x[p q] y: b at y.

1 6

Notation:: We write,

p know. ... q knows b, to stand for, (p knows (q knows 6))

Our next theorem shows that knowledge can be gained or lost only in a sequential
manner.

Theorem 3: (p knows. q knows b at x and x (p ..q] y) implies q knows b at y.

Observe that x,y are arbitrary computations and p,...,q are arbitrary processes in
the above theorem. If x < y, p knows ... q knows b at x and -q knows b at y, then
knowledge is lost and the theorem shows that -x [p ... q] y. Using the fundamental
theorem, we then deduce that there is a process chain <p ... q> in this case. Hence
knowledge can be lost only by p informing the next process in the chain (of its intention
to lose knowledge of b) which informs the next process, etc., until q is informed and q
loses its knowledge of b. If y :5 x, -qknows bat yand pknows ... qknows bat x,
then knowledge is gained and the theorem then tells us that -x [p ... q] yt. Using al-
gebraic properties of isomorphism relation this leads to -y [q ... p]y and then using the
fundamental theorem, there is a process chain <q ... p> in (y,x). Therefore, knowledge
is gained in a sequential manner in the reverse direction, q gaining knowledge of b andS then informing the previous process in the chain of its knowledge of b,...,p gaining
knowledge of b by being informed by the process ahead of it in the process chain.

This theorem gives a lower bound not only on the numbers of message transmis-
sions but also on the lengths of the process chains. All the results in [1] may be
similarly proven for the general model proposed in this paper. We sketch two new
results.

K-Way Common Knowledge

The notion of common knowledge, as used here, is from Halpern and Moses [2].
They showed the impossibility of achieving common knowledge in a system which ad-
mits of no simultaneous events. We prove a stronger result: we show that if every
event is visible to k or fewer processes, k > 0, then common knowledge among k + 1
processes cannot be gained or lost.

The predicate, P ha. common knowledge of b, where P is a set of processes and b
is a predicate, has a value equal to the following expression at any computation x:

(b atx) and (for all pin P. pknows bat x) and-

(for all p,q in P. p knows q knows b at x) and..

N

7

It follows that, for any p in P,

P has common knowledge of b = p knows P has common knowledge of b.

Let every event e in a system be visible to at most k processes, i.e., no event oc-
curs at more than k processes simultaneously. Then, we will show that for any P whose
cardinality exceeds k and any predicate b, P ha. common knowledge of b is a constant
predicate, i.e., it holds at all computations or its negation holds at all computations. In
other words, no nontrivial common knowledge can be gained or lost. In particular, two-
way communication is inadequate for achieving three-way synchronization and gaining
knowledge by each party about each other's knowledge about the synchronization.

Theorem 4: Let every event in a system be visible to at most k processes and let P be
a set of more than k processes. For every predicate b, P has common knowledge of b, is
a constant predicate.

Proof (sketch): We show that,

P ha. common knowledge of b at z

P has common, knowledge of b at null.

Proof is by induction on length of z. Base step is trivial. For the inductive step, we
need to show that for any computation (x;e),

P has common knowledge of b at z = P ha. common knowledge of b
at (z;e).

From the premise of the theorem, there is some process p in P to which event e is in-
visible. Hence,

X [p] (z;e).

Therefore, p knows b at z =- p knows b' at (z;e), for any b '. Letting b' be, P ha. com-
mon knowledge of b, and using the fact that,

P has common knowledge of b = p knows P has common knowledge of b,

the desired result follows.

ZVV N
461 .-6 I

8

The next result was suggested to us by Amir Pnueli. We show that all processes
in an asynchronous message passing system can never agree that all channels are empty
unless they are empty at all computations, i.e., they are initially empty and no process
sends a message in any computation. A formal model of asynchronous message passing
systems appears in [1] from which the following can be easily derived.

Let 6 be the predicate that all channels are empty. Then, -q knows b at x and q
knows b at (z;e) =* -. 6 at z. Intuitively, if q gains knowledge of channel nonemptiness,
it does so only by receiving a message (event e) and hence some channel was nonempty
at z. Now we can prove:

Theorem 5: Let D denote the set of processes in an asynchronous message passing sys-
tem in which some process sends a message in some computation. Let 6 be the predi-
cate that all channels are empty. Then, for all p in D: p knows b, never holds.

Proof (sketch): If not, then there is a computation (z e) and process q such that --.q
knows b at z and for all p in D: p knows b at (z;e). Event e is a message receive on q.
Therefore, there is a process r, r 34 q, such that

X [r (x;e)

Hence, r knows b at z, because r knows b at (z;e). From, -'q knows b at x and q knows
b at (x;e), we have -6 at x, which contradicts, r knows b at z.

In some sense, the simplest nontrivial knowledge that a process can acquire is
whether an invisible event e has occurred. A process has this knowledge if and only if it
knows that its observation includes a visible event e' where e --+ e'. It follows that ter-
mination of one process p cannot be detected by another process q, because the event
causing termination in p has no successor (e -+ e' means e' is a successor of e) in q.

When each event has a unique color, the question of whether an observation in-
cludes e 1, as above, is readily settled: we simply decide for each event in the obser-
vation whether it is a successor of e. However, introduction of colors makes this
problem more difficult; we show that the problem is equivalent to answering whether an
observation can occur in a system.

Theorem 6: Let x be a computation in system S and e be an invisible event of p.

p knows e has occurred at x = there exists y in S', z [p] y, where S'
is a system derived from S by deleting all e', e -- e'.

- . **-2 ,

Acknowledgement

We are immensely indebted to Professor Amir Pnueli for stimulating discussions
about the "right" model for distributed computing. Professor C.A.R. Hoare's en-
couragement and advice about a more algebraic approach, is deeply appreciated.

References

1. Chandy, K. Mani and Misra, Jayadev, "How Processes Learn," Proceedings
of the Fourth Annual ACM Symposium on Principle, of Distributed
Computing, Minaki, Canada, August 5-7, 1985 and Distributed Computing,
Vol. 1, No. 1, 1985, (Springer-Verlag Publishing Company).

2. Halpern, Joseph Y. and Moses, Yoram, "Knowledge and Common
Knowledge in a Distributed Environment," Proceedings of the Third Annual
ACM Symposium on Principles of Distributed Computing, Vancouver,
Canada, August 27-29, 1984.

I!

I

UNDERSTANDING A BYZANTINE
ALGORITHM

J. Misra

Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712

TR-&5-20 September 1985

~ This work was supported in part by a grant from the Office of Naval Research under
grant ONR N00014-85-K-0057.

Understanding a Byzantine Algorithm

K. M. Chandy
J. Misra

University of Texas

Introduction

The problem of Byzantine Agreement defined in (1] is as follows. There are N
processes any pair of which may communicate by messages. Any message sent is
received instantly and correctly by the recipient. It is given that exactly t of the
processes are faulty and the rest, N-t, are reliable. Each process is initially off or on.
The problem is to devise a scheme whereby all reliable processes agree eventually on a
common value, 0 or 1. Furthermore, the common value is 0(1) if all reliable processes
are initially off(on). Difficulty arises due to the nature of faulty processes: they may
provide conflicting information in a concerted manner to thwart agreement by reliable
processes.

We discuss an ingenious algorithm for this problem appearing in literature [2 1. This
note is intended as a different, and hopefully simpler, exposition of this algorithm and
its proof. We believe that simplification is achieved by removing explicit message
communication from the algorithm description. It should be easy to see how our
scheme may be implemented using synchronous message communications. Our proof
closely follows [2 1 though the restructuring results in some simplification.

It is known that solutions for this problem exist only if N > 3t + 1. We assume that
N=3t+ 1 and t > 0. Let lowf- t+ I and high---2t+ 1; therefore high is the
number of reliable processes. Observe that every subset of low processes has at least
one reliable process and every subset of high processes has at least low reliable
processes.

Algorithm

We represent states of processes and their communication histories by a colored directed
graph. Every vertex corresponds to a distinct process and a vertex state is off/on
denoting the current state of the process. An edge (i,j) is directed from process i to j,
i 3 j, and has a color, black or white.

Initially, there are no edges in the graph and a vertex state is the corresponding process
state. The algorithm proceeds in rounds where during the first part of a round
processes note the states of all other processes and edges that are present in the graph.

III'4 , I IJ

2

Upon completion of these observations, processes recompute their states and may add
new outgoing edges. Note that states and outgoing edges of faulty processes may not bei observed consistently by different reliable processes; this is the Byzantine aspect of the
problem. We assume that some unspecified mechanism coordinates the observations
and computations such that all observations precede all computations in a round. In
particular, processes cannot observe changes in the graph or process states during the
computation phase of a round.

Reliable processes use following rules to add edges, color edges and change their own
states. These rules may be applied over and over by a process until no further rule is
applicable. In the following, rules are given for a generic reliable process p and
arbitrary process , (pj is the edge from p to j, if it exists. Let in(j) denote the number
of incoming edges to j, as observed by p, during a round; white-out(p) is the number of
white outgoing edges of p.

w Edge Addition::
(p,j) does not exist and (p observed j is on or in(j) >_ low) --
add black edge (p4)

Edge Coloring::
(p,) is black and in(j) > high -- color (pil white

State Change::
(Let r be the round number}
p is off and white-out(p) t + r/2 --+ p becomes on

UObservation
1. No reliable process becomes off once it is on.

2. No edge is ever deleted by a reliable process. No white outgoing edge of a
reliable process ever becomes black.

3. A reliable process creates a black edge (pj) only if j is observed on by some
reliable process, possibly p. edge (p,) is white only if there are at least low
reliable processes with edges to j and hence these edges are observed in all

subsequent rounds by all reliable processes.

4. There is nothing magical about the function t + r/2.

Let R be such that agreement on a common value is reached by the end-of round R.

Any function f satisfying the following, is acceptable.

3

1(2) -low, (r+ 2) _< 1 +1(r) for all r in 0 < r < R-2, f(R-3) _ high,

f(R- 2) > high.

U We allow function f to be real valued and hence, without loss in generality, we can

relax one of the conditions to: J(R - 3)] 2 high. One of our goals is to minimize R.

Note that [f] increases from low to at least high from round 2 to R-3 and f can

increase by at most 1 in two rounds. The unique minimum for R is 2t + 4 and a choice

for fis, t + r/2.

We have not yet specified the conditions under which processes commit to different

values. These conditions become apparent from the results proven below. In the

following pq denote reliable processes and j an arbitrary process. We use "at round r"

to mean upon completions of computations of round r and "in round r" to mean prior
to computations of that round. "At round 0" will refer to initial conditions.

Lemma 1:

Edge (p,q) is white at round (r + 2) iff q is on at round r.

Proof:

If q is on at round r, it is observed on in round (R+ 1) by all reliable processes and
hence in(q) > high at (r + 1). Then every reliable process, including p, has a white

edge to q at round (r + 2). Conversely, if q is off at round r, it is off at all precious
rounds and it is observed off in round (r + 1). Hence in(q) < low at (r + 1) and
therefore no reliable process has a white edge to q at (r + 2).

Let np(r) denote the number of reliable processes which are on at round r. We show in

the following lemma that if any reliable process changes state then every reliable process

is on two rounds later; furthermore a state change is possible only if at least r/2 reliable

processes are on two rounds earlier. We note that np(r) is monotone nondecreasing in r.

Lemma 2:

For everyr, 2 < r < R-2,

Inp(O) - np(r)] or [np(r + 2) - high and np(r - 2) 2 (r - 1)/2]

Proof:

Consider the smallest r, if any, for which np(0) np(r). If no such r exists, the lemma

holds. Some reliable process p applies the state change rule at roud r. For p,
white-out(p) 2 t + r/2 in round r; hence p has white edges to at least r/2 reliable

Id

3** 4

§processes and, from lemma 1, all these are on at round (r - 2), i.e. np(r - 2) ! r/2.
Also np(r) > np(r - 2) and hence np(r) > r/2.

U Next we show that every reliable process is on at round (r + 2). We only need to prove

AA ~this for reliable processes which are off at round r, let q be one such process. We show
that if (pj) is white at round r then (q4) is white at round (r + 2): for (pj) to be white,
intj) 2! high In some round before or in round r, as observed by p; hence at least low
reliable processs have edges to j in round t-, then every reliable process has at least a
black edge to j at (r + 1) and white edge at (7 + 2). Also, edge (p,q) is white at round
(r + 2), from lemma 1. Also, from lemma 1, p has no white edge to q at round r.
Therefore, white-out (q) at round (r + 2) 2! 1 + white-out (p) at round 7 > t + (r + 2)/2;
hence q is on at (r + 2).

Consider any round 9. For #9 < r, np(r') = np(O) and hence the lemma holds.

Fort vJ r, np(9+ 2) - high.
For r = r+ 1, np(9 - 2) >! np(r -2) 2! r/2 =(r' -1)/2.

NFor 9= r+ 2, orl==r + 3, np(i'- 2) 2 np(r) 2! np(r -2)+C> (r +2)/2 > (t;- 1)/2. -

For all larger values 9, np(i9 - 2) = high > (r - 1)/2.

Theorem:

1. np(0)=O 0implies np(R -2) =O

2. np() 2 low implies np(R - 2) =high

3. np(0) < low Implies [np(0) = np(R - 2) or np(R - 2) =high]

Proof:-

1. Suppose np(0) = 0. Observe that np(l) = 0. Let r be the smallest value,
7 > 2, for which np(O) 34 np(r). Then from lemma 2, np(r - 2) 2!
(7 - 1)/2 > 0, contradiction.

2. Let np(0) 2! low. From lemma 1, every reliable process p is on at round 2
because tvhite-out(p) 2! low == t + 7/2, at r = 2. Hence np(2) = high, from
which the result follows.

3. Suppose uap(0) 76 np(R- 2) Then from lemma 2, np(R -4) >
-- (R - 3)/2 > (2t + 1)/2. Hence np(R - 4) ? low. Because np(0) < low,

np(O 76np(R- 4. Frm lmma2, np(R - 2) = high.

I Commit Rule:: At round R,
white-out(p) 2: high -*commit to I

now~

white-ouo~) < high --* commit to 0

Corollary 1L:

U All reliable processes commit to the same value. If they are initially off/on they
commit to 041).

Proof:

From the theorem np(R - 2) < lowo or np(R - 2) = high. If np(R - 2) < low then,
from lemma 1, for any reliable process p, whit e-out(p) < high at round R. If
vap(R - 2) = high then, again from lemma 1, whit e-out(p) >! high. Hence all reliable
processes commit to the same value. Other parts follow trivially from the theorem.

UV

6

! REFERENCES

1. Lamport, L., Shostak, R. and Pease, M. "Byzantine Generals Problem",3TOPLAS 1982.

2. Lynch, N., Fischer, J. and Fowler, R. *A Simple and Efficient Byzantine
Generals Algorithm", Proceedings of the 2nd Symposium on Reliability in
Distributed Software and Database Systems, July 1982.

"I

U

I
On the Nonexistence of Robust

Commit Protocol

K. Mani Chandy
Jayadev Misra

Department of Computer Sciences
The University of Texas

Austin, Texas 78712
(512)471-4353

21 November 1985

i

This research was supported by a grant from the Office of Naval Research under grant
N00014-85-K-0057.

1. ITable of Contents
1. Introduction1

2. Asynchronous Message Passing Systems
3. Commit Protocol 2
4. Robust Commit Protocol 4

N

I

N%

a]

1. Introduction
An important result in the theory of asynchronous message passing systems is the0 impossibility of distributed consensus with one faulty process. This problem was first

defined and its impossibility proven in [2]. The proof in [2] relied on operational details
of asynchronous message communication: channels, sends and receives, etc. Our goal is
to prove this beautiful result in, what Dijkstra terms, a purely nonoperational
framework. We do so by defining a set of properties asynchronous message passing sys-
tems and a set of requirements for consensus with, or without , faulty processes. Our
formulation is slightly more general than the original formulation: we allow processes
to be nondeterministic and we do not require any kind of fairness after failure of a
process.

We use some algebraic properties of system computations introduced in [1]; we
also use most of the key ideas from 121.

2. Asynchronous Message Passing Systems
Discussions of asynchronous message passing systems are usually given in terms of

processes, channels, send and receive primitives for message communications, etc. We
take a different approach; we define these systems by a small set of their properties
which make no mention of channels or messages.

An asynchronous message passing system, to be henceforth called aytem, is a set
of processes and a set of computations. A computation is a finite sequence of pairs of
the form (ep), where e is an event and p is a process.

An intuitive meaning of a computation in a system is that it is possible for every
event to happen at the corresponding process in the sequence given by the computation.
We assign no meanings to events or processes. No causality among events, such as be-
tween sends and receives, is explicitly stated. It is not required that the processes be
deterministic.

Property Al:: Every prefix of a computation is a computation.

The empty sequence is, therefore, a computation; it is denoted by null.

Notations:: Symbols z, V, z, y denote computations, e, e ' events and p, a process.
<z; (e,p)> denotes the sequence obtained by concatenating the pair (e, p) to z. An
eztension of a computation z is a computation of which z is a prefix. For any z and p

C- let z be the subsequence of x containing p as the process component. There is an event
on p between z, y, where y is an extension of x, if there is some pair (e, p) in y after z.

Definition:: Computations x, y are isomorphic with respect to p, to be" denoted by
x [] y, means that zx, = Y.

2

The notion of isomorphism is from (1] where it was used to state and derive
several properties of system computations. For this paper we only note the following
two elementary properties.

* [p] is an equivalence relation over system computations.

* For z a prefix of V, there is an event on p between z, y iff -,z [p] y.

~ Property A2:: Let <z; (e, p)> be a computation and y an extension of x such that
z [p] y. Then, <y; (a, p)> is a computation.

The intuitive meaning of property A2 is that if an event e can happen at a process
p at some point in the computation of the system then the same event can happen at a
later point in the computation, provided that p has taken no other step between these
two points. This requirement does not hold for all concurrent systems; in a shared vari-
able system, a process reading the value of a shared variable is not guaranteed to read
the same value at a later point. However communications in message passing systems
are limited to message sends and receives which, by their asynchronous nature, satisfy
this property.

Property A3:: For any z and p, there is a computation < (e, p)>.

In a message passing system, processes wait only to receive messages; this property
postulates that a process can always terminate its waiting without receiving a message.
Furthermore, a terminated process can always take a dummy step.

We have defined computations as finite sequences and almost all of our proofs will
exploit the finiteness assumption. In order to state the problem formally, however, we
need the concept of a fair sequence, a special kind of infinite sequence. A fair sequence
is an infinite sequence of (event, process) pairs where each finite prefix is a computation
and each process appears in an infinite number of pairs. It follows, by repeated applica-
tion of A3, that every computation is a prefix of some fair sequence.

~ 3. Commit Protocol

Intuitive Discusion

A commit protocol Is a system in which every process eventually (explained below)
commits to a value, 0 or 1, and all processes commit to the same value. Furthermore,
processes do not commit to one value, say 0, in all computations. Fair sequences cap-
ture our intuitive notion of infinitely long computations (though, recall that our formal
model only admits of finite computations) and hence, we require that-every fair se-
quence have a finite prefix in which a commitment is made. Since every computation is

3

a prefix of some fair sequence, it follows that every computation has an extension whih
commits.

Now we introduce the extremely useful idea of valency of a computation, from [j.
Call a computation O-valent if all extensions of it which commit , commit to 0;
similarly 1-valent. A bivalent computation Is neither 0-valent nor 1-valent . Since
every computation has an extension which commits, it follows that a bivalent computa-
tion has a 0-valent extension and a 1-valent extension. Call a computation univalent I
It is either 0-valent or l-valent.

Now we give a formal set of requirements for a commit protocol.

Formal Description of Commit Protocol

Let y includes z denote that is a prefix of for all p, i.e., every process has ex-
tended Its own computation in going from z to y. The relation includes is a generaliza-
tion of extension.

A commit protocol is a system in which computations are O-valent, 1-valent or
4... bivalent. These satisfy:

C1:: There is a O-valent computation and a 1-valent computation.

C2:: Every bivalent computation has an extension that is O-valent and an exten-

sion that is 1-valent.

C3:: If y includes z and z is 0-valent (1-valent) then y is 0-valent (1-valent).

C4:: Every fair sequence has a finite prefix that is univalent.

Observation:: The null computation is bivalent, from C1 and C3.

Definition:: Two computations are incompatible means that one is 0-valent and the
9other is l-valent; they are compatible otherwise.

Lemma I:: For a computation <z, (e, p)> and any extension z of z,

- z[pJ z or the computations <x, (e, p)>, z are compatible.

Proof:- Suppose z [p]z. Then, from A2, <; r(e, p)> is a computation. If <z; (e, p)>
and z are Incompatible then one is 0-valent and the other 1-valent and hence
<z; (e, p)>, which includes both these computations, is both O-valent and 1-valent,
from C3; contradiction! 0

4

A process p is a decider for a bivalent computation x if an event on p extends z to
a O-valent computation and another event on p extends z to a 1-valent computation;
equivalently, there exist incompatible computations < z; (e,p)> and <; (e', p)>. The
theorem, given below, shows that every commit protocol has such a pair of incompatible
computations.

. Theorem 1:: (Existence of Decider)

There exist incompatible computations <z, (e, p)> and <x- (e , p)>.

Proof:: We assume the contrary: every pair of computations <z;(, p) >, <X; (e, p)>
Is compatible. We then show that for every bivalent z and p there exists a bivalent ex-
tension y of z such that -, x [p] y we then show that this leads to a contradiction of the
requirement C4.

Consider any bivalent z and process p. There is a computation <z, (e, p)>, from
A3. If <;,(e, p)> is bivalent, the result is proven. Otherwise, without loss in
generality, assume that <x; (e, p)> is 0-valent. From bivalence of :, and C2, there ex-
ists a I-valent extension z of x. Since <x;(e, p)> is O-valent and z is I-valent, they
are incompatible and hence, from lemma 1, -z [p] z.

Now we display a bivalent extension y of : for which -, z[p] V. We only consider
extensions of z which are also prefixes of z. Since x[p) z and ", x[p] z, there exist exten-

* sions y', V such that x[p] y', -x: [p] y and y is a one event extension of p'. Therefore,
V < ' ; (e' , p) > for some e . We show that y is neither O-valent nor 1-valent and
hence bivalent. From C2, y is not 0-valent because z includes V and z is l-valent. To
see that p is not l-valent, note: (1) since <x;(e , p)> is a computation, y' is an exten-
sion ofz and z[p] , from A2, <Vp;(e,p)> is a computation, (2) <y ,(e,p)> and
p <p', (Y , p)> are compatible, from the assumption at the beginning of this
proof, and, (3) <y',(e,p)> is 0-valent, from C3, because it includes <z,(e,p)>
and the latter is 0-valent and, (4) from (2) and (3), y is not 1-valent.

Now we have a procedure for obtaining a longer bivalent computation from any
bivalent computation and any process p. We may apply this procedure infinitely often,
starting from null computation which is bivalent, using an arbitrary process p each time
and ensuring that every process is chosen an infinite number of times. The resulting in-
finite sequence is fair and all its finite prefixes are bivalent. This contradicts require-
ment 04. 0

-. - 4. Robust Commit Protocol
A commit protocol is robust means that in spite of failure of any one process at

~ any point in the computation the remaining processes can commit to a value. Failure
of a process can be modelled by no event happening at that process. it is somewhat
more difficult to define a fair sequence after failure of a process; fortunately we don't

need to define that concept. We can work with a very weak requirement for robustness:
for any p, It should be possible to extend a bivalent computation to a univalent cor-
putation without any event happening on p in between. Formally,

R:: For every bivalent z and p, there exists a univalent extension z of z such
'. that z[p] z.

We now show that no robust commit protocol has a decider for any bivalent computa-
tion.

Lemma 2::

In any robust commit protocol, any two computations y - <z;, (e, p)> and y' =

<z; (e 1, p)> are compatible.

Proof::

If z is univalent then V, yI are compatible, using C3. For any bivalent z and p,
apply (R) to conclude that there is a univalent extension z of z such that z [p] z. From
lemma 1, yz are compatible and also y ',z are compatible. Since z is univalent, y,y I are
compatible.

Theorem 2:: (Impossibility of Robust Commit)

There is no robust commit protocol.

Proof::

Immediate from theorem 1 and lemma 2. 0

Acknowledgement

We are greatly indebted to members of the Austin Tuesday Afternoon Club for a
Sthorough reading of an earlier draft of this manuscript.

References

1. Chandy, K. Mani and Msra, Jayadev, mHow Processes Learn," Proceedings
of the Fourth Annual ACM Symposium on Principls of Distributed
Computing, Minaki, Canada, August 5-7, 1985 and to appear in Distributed
Computing, in 1985.

2. Fischer, Michael J., Lynch, Nancy A., and Paterson, Michael S.,
"Impossibility of Distributed Consensus with One Faulty Process,"
MIT/LCS/TR-282, Laboratory for Computer Science, Massachusetts In-
stitute of Technology, Cambridge, MA.

-tl 40,

tr4.
- ~i

ze-*

. A-*.-. .'

'''

NOW PROCESSES LEARN

K. Mnal Chandy & Jayadev Misra
- Department of Computer Sciences University of Texas Austin, 78712

1. Introduction advocate nonoperational reasoning. The basis for

Procemes in distributed systems communicate with nonoperational arguments is isomorphism; we relate

one another exclusively by sending and receiving isomorphism to process chains. Algebraic properties

mesages. A process has accem to its state but not to of system computations under isomorphism provide a

the states of other processes. Many distributed precise framework for correctness arguments.

algorithms require that a proces, determine facts

about the overall system computation. In It has been proposed 13,8] that a notion of

anthropomorphic terms, processes "learn" about 'knowledgen is useful in studying distributed

states of other proces in the evolution of system computations. In earlier works, knowledge is

computation. This paper is concerned with how introduced via a set of axioms [4 1. Our definition of

processes learn. We give a precise characterization of knowledge is based on isomorphism. Our model

the minimum information flow necessary for a procem allows us to study how knowledge is "gained" or

to determine specific facts about the system. alost'. One of our key theorems states that

knowledge gain and knowledge lom both require

The central concept in our study is that of sequential transfer of information: if procem q does

isomorphiam between system computations with not know fact 6 and later, p knows that q knows b,

respect to a process: two system computations are then q must have communicated with p, perhaps

isomorphic with respect to a procem if the proces indirectly through other proceses, between these two

behavior is identical in both. In anthropomorphic points in the computation; conversely, if p knows that

terms, "system computations are isomorphic with q knows b and later, q does not know b then p must

respect to a procem means the proem cannot have communicated with q between these two points

distinguish between them. in the computation. In the first case, the effect of

communication is to Inform p of q's knowledge of b.
Many correctness arguments about distributed Analogously, In the second case, the effect of

systems have the following operational flavor:. 1 will communication is to inform q of p's intention of

send a mesge to you and then you will think that I relinquishing Its knowledge (that q knows b).

am busy and so you will broadcast ... 0. Such Generaizatloos of thee results for arbitrary sequences

operational arguments are difficult to understand and of proesse are stated and proved as corollaries of a

error prone. The basis for such operational general theorem on isomorphism.

arguments is usually a "process chaln*: a sequence of

omm e transfers along a chain of proemes. We We use the results alluded to In the last paragraph

Permission to copy without fee all of pan of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

200
I @. 1985 ACM 0-89791-167-9/1985/0800-0204 $00.75

for proving lower bounds on the number of mesages earlier than the receive in r.~ this send event will be

required to solve certain problems. We show, for called the send event corresponding to the receive.

Instance, that there is no algorithm to detect We leave it to the reader to show that system3termination of an underlying computation using only computations are prefix closed.

a bounded number of overhead messages.
In this paper we consider a single (generic)

2. Model of a Distributed System distributed system. For instance, when we say Oz is a

A distributed system consists of a finite set of computation" we mean that z is a computation of the

processes. A process is characterized by a set of distributed system considered here. We use

process computations each of which is a finite computation to mean system computation when no

sequence of events on that process. Process confusion can arise.

computations are prefix closed, i.e. al prefixes of a

process computation ame also proess computations (of Notation: We use 1, p, z to denote

that proess). An event on a procm is either a send, computations, p, q for processes and P, Q for process

a receive or an internal event. A send event on a sets; these symbols may be used with subscripts or

process corresponds to sending of a message to superscripts. The concatenation of two sequences yi

another process A receive event on a process and z will be denoted by (yVz). For sequences V and z,

corresponds to reception of a message by the prem y z denotes that y is a prefix of r, in this case (y,

There is no external communication associated with z) denotes the suffix of x obtained by removing y

an internal event. For a set of processes P, a send from z. The empty sequence will be denoted by null.

event by P is a send event by some component pocessanaogprdcts The symbol se is used fodnt qaiisa o rt

of P to a process outside P, similarly a receive event anam gprdcts Thsyblsisuefo

byPdntsrcitb sm rcs nPo definitions. The set of all processes in the system will

message sent from outside P. Communication amongbedntd yD ad fo ayprcs st

processes in Pare internal events of P, We use we is P, 15 -D -P.

on P", for event e and proem set P, to denote that e 3 smrhs
Is an event on some process In P. We rule out

procsse whch aveno ventin ny omptaton.We define the relation (p) on the set of system

We assume that all events and all messages are cmuain sflos

distngushe; fr istacemulipl ocurrnce oftheDefinition: For system computations x,tr

same message are distinguished by affixing sequence Inohrwrs Pjmaspscmuaini h

numbers to them. I te odzp ;maspscmuaini h

same in system computations z and y. In this case,

Let x be any sequence of events on component we say z, y are isomorphuic mith res pect to p. For a

processes of a distributed system. The projection of z process set P, define relation IPJ, on the system

on a component proem p, denoted by ,X,, is the computations, an follows.

subsequence of z consisting of all events on p. A finite Definition: z JPip -a for all p in P, z [p] y.

sequence of events x Is a systema computation of a Thus z [PJ means that, given only the computations

"distributed system means (1) for all processes p, z P is of processes In P we cannot distinguish z from V.

aproem computation of p and, (2) for every receive From definition, z I[{}) p, for all computations z, y

event In s, say receipt of message in, by proess p, where (1denotes the empty set. O~rve that I P[is

there is a send event, of sending mn to p, which occurs an equivalence relation.

205

It is convenient to represent all such isomorphism Hence, [PQ - [P o [Q1 where .0- is the

relations by an ieomorphism diagram: an undirected relational composition operator. This operator is

labelled graph whose vertices are computations and associative (from properties of relations). In terms of

there is an edge labelled [PI between vertices z, y if P the isomorphism diagram, z[P0 ... P5] z means there

is the largest ssw of processes for which z IP1 . is a path from z to z whose edges are labelled with

Observe that every vertex has a self loop labelled I D Q0 ... Q, respectively, where Q, -? P, for all i.

where D is the set of all processes in the system.

Note that z I D I v, z 94 y, implies y is a permutation Example 1 (contd.): We have y [p q0 w and

of. w 9p] y. Also, trivially, V Ip] z, I[t a p , etc.

Example 1: Consider a system with two

processes, p and q, for which part of the isomorphism We note some properties of isomorphism relations.

diagram, showing the relationships among four system In the following, P, Pi, ... ,P,, Q, denote arbitrary

computation, is given below. proces sets and z, y, z denote arbitrary
computations.

1. [P is an equivalence relation.

-(,.q) . [p) ((p.q 2. (Substitution) ([-[- 16[1) implies
"±/(.00,71 - (aV'I) for arbitrary

sequences of process sets a, 0, .7,.

•Upq)1 [p] 3. (Idempotence) [PP, . [P1
4. (Reflexivity) z I P, ... P, 1

5. (Inversion) z [P ... e I-

6. (Concatenation) For 0 < m < n,

Figure 3-1: AnIsomorphism Diagram 3 r z IPt... P. I ,[p -

From the diagram z j, but not z[qy. This P. z = z [P...P P. ... P. z

means p has the same computations in both z and v, 7. [PU Q I (I P1" n[Q])
whereas q's computations in z and V differ. 8. (Q 2 P) - ([QI C (P])

Computations z and z have the same computations

for both p and ; hence one is a permutation of the o.(P=Q)==[PJ=[QJ)

other. There is no direct relationship between p and 10. Q 2 P implies (I Q PI n -p n [P Q 1)
tv, neither V [p] w nor I 1qj w holds. However, there is

an indirect relationship between y and w because These properties follow from properties of

y[pIz and z [qA w. We explore such indirect relations and our model. We only sketch a proof of

relationships next. one part of property 8:

0 (Q 1 (PI) immpies (Q 2 P).
IfQ2Pthen thereinaprocesspinP-Q. From our€ Definition: Let n > 0 ad P, be process sets,

: Lt n > 0 amodel, p has an event e in some computation (Zv).

(P -P n PThen z [Q I (ze) and -z I PI (,e). Hence I Q 1 -PI.z (Po ... P.] zs z (lPo ... P.,_1ly and Y [P, l z,
for some computation y.

206

1|

3.1. Process Chains Theorem 1: (Fundamental Theorem of Process

As noted in the introduction, the basis for many Chains)

operational arguments are proces chains: pocess Let z be a computation and z a prefix of z. Let %

informing q which in turn, informs r etc. One of our P, •.. Pn, n > 1, be sets of processes. Then

goals is to replace such concepts by algebraic z P1 P2 "... p- Iz or there is a process chain

properties of system computations. In this section, we <PI P2 ... P.> in (z,z).

show how process chains are related to isomorphism.
We first define process chains; this definition is along Proof: Omitted

the lines suggested by Lamport 5].

3.3. An Application of Isomorphism: How To
Definition: For events e, 0 in a computation Cu

, e means:Construct A Computation By Fusing
Separate

Ones
1. ed is a receive and e is the corresponding In this section, we show an application of

send, or
isomorphism: we give a construction to "fuse" two

2. events e, el are in the same process computations to obtain a new computation, provided
computation and (e - ' or e occurs earlier
than el), or certain types of paths exist in the isomorphism

3. there exists an event e" such that e -4 e" diagram. We motivate the discussion by the following
and." -4.

observations. Suppose (z-,E) and (X;E) are

For brevity we write e . a' when the computations where all events in E are on a process A

computation z is understood from context. We will set P and all events in P are on 7. Then, from

write e. -. el . - -. en, as shorthand for definition, (=,Z'E) and (z,EF) are also computations,

C0 -. e ! and ... and en..1 "" en. Observe that because events in Ef are independent and hence may
e - e for every event e in z. A computation z has a be fused in arbitrary order. A similar result appears

proc.. chain <P 0 P1 ... P,,> means there exist in Fischer, Lynch and Paterson [2 1. The following

events e., C, %,, not necessarily distinct, in z such lemma is a generalization of this observation.

that event e, is on Pi, for all 0 < i < n, and

6. Lemma 1: Let z, V, z be computations where

z < V and z < z. Let P, Q be such that PU Q = D,
Observation 1: Any occurrence of "P " in a z [P1 y and z x. Then there exists a

procem chain may be replaced by P P, or vice computation wwhere z < w, y I[Q wand z [P] w.

versa, since for any event e on P, e --* e.

Observation 2: Let z be a sequence consisting of The relationships among z, y, z and w are

a subset of events from a computation V. Suppose represented by the following commutative

that for every event e in z, every d, where d Le, is isomorphism diagram.

also in z and e'l Ze. Then z is a computation.

-. 2. Relationship Between Isomorphism and

Process Chain

~207

arbitrary numbers of computations under similar
constraints.

Theorem 2: (Fusion of Computations):

Consider system computations z, V, z where z < y

and x < z. Let P be a set of processes such that

a there is no proces chain, (1) <PIS> in (z, y) and (2)

<5 P> in (z, z). Then there is a computation t

QPwhere, z < w, y[75]w and zIPIw. That is, w

consists of all events on P5 from y and all events on P

from z.

W 0

Figure 3-2: Isomorphism Diagram Depicting
Fusion Proof of the Theorem: According to theorem

Proof of the Leua : 1, absence of proces chains as given in this theorem
Let w - x; (x,y); (x,z).

From the condition of the lemma, (z, y) has events , x IPI and x (P P1 z.

only on P and (z, z) has events only on Q." Since Consider the isomorphism diagram in Fig. 3-3.

PU Q -D, 5n;=- { } and hence no process has Label the intermediate point between x, y as u and

* events in both (x,y) and (xz). It follows, from between z, z as v in this figure. Now we apply lemma

definition of computations, that w, is a computation. 1 to x, u, v to obtain w. Note that, u [F] y and

Also y[Q Iw, z(P] w and x < w, as required for (71 hence vI w. Similarly z Pl. This

5 proof of the lemma. proves the theorem.

0 0

Note that, in the construction of lemma 2, all

events from E and P were present in the fused

computation. We prove a far more general result

below. We show that for any two arbitrary P

computations y and z, the projected computations, Pp

and zp-, way be fused to form a new computation

provided there is a computation x which is a prefix of -
1P

bothyandz, and no message sent by 1 in (y) is F ',

received by P in (z,y) and no message sent by P in P

(z,z) is received by 15 in (z,z). This makes intuitive Y W p

sense: proceses in P can execute al events in g giveni,5 Figure 3-3: Isomorphism Diagram Depicting Proof

only that proces in 15 execute all events up to z of Fusion Theorem

and similarly for executions of events on P up to z. 3.4. Semantics Of Event Types In Terms Of
However, the statement and proof of this result a.4 Semanti.p

r diffcult without the notion of isomorphism. We note We nowuehmthatthersslt my b eaily enealied t fuion ofWe now use isomorphism to state and derive some
that the result may be easily generalized to fusions of important facts about various types of events. First,

208

. a.t0 -si iarly pve... a-a a - -

note that a process carries out an internal event or Proof. We will prove only Case 2; other cases are

sends a message depending on its own computation similarly proven.

alone. Therefore, if a process takes such a step in a z [P]51 z implies there exists y, z I P]I yand y [1] z.

omputation x, it will also do so in y, if x, yt are From principle of computation extension, (y;e) is a
isomorphic with respect to this process. An analogous
result holds for internal and receive events. The computation and (ze)[P1 (se).

following principle, which states these facts formally, Also, (y;e) [y1 p.

may be proven from the definition of system

computation. Hence, (xe) [P 1P5 z and therfore, (z;e) [P is] z.

Principle of Computation Extension::

Let e be an event on P. This theorem captures the intuitive notion that

1. e is an internal or send event: the set of possible computations, isomorphic with

(z I PI y and (--,e) is a computation) implies respect to P, can only shrink in size as a result of a

(x,e) P I y implie (y - e) is a computation,

where (y - a) is the sequence obtained by of possible computations, isomorphic with respect to P

deleting e from V. cannot shrink as a result of a send: after the send,

0 additional computations which accept the message

Note: In (1), (ze) (P] (V;e) and in (2), sent are isomorphic while all prior isomorphic

z [P) (Y -). computations remain isomorphic. An internal event

Corollaxy: Let e be a receive event on P and let the can neither expand nor shrink the set of isomorphic

corresponding send event be on Q. computations.

(z PU Q I y and (z,e) is a computation) implies
(y,) is a computation. 4. Knowledge

0 As we have remarked earlier, predicates of the

Proof: e is an internal event of PU Q. type P knows b at z may be defined using
0o

isomorphism. We explore properties of such

Following theorem follows from the principle of predicates in our model. We show that they satisfy

computation extension. the *knowledge axioms" as given in [3,6]. We prove

a general result which shows that certain forms of

Theorem 3: Let (ze) be a computation where e knowledge can only be gained or lost in a sequential

is an event on . fashion along a chain of processes. That is, if b is

Came 1:eisareceive: false for a computation and later, P knows P2 knows

P,, knows 6 (this represents knowledge gain),

for every r. (x,e) I P 1 z implies ZI [P~ Z then there is a process chain <P. P-t ' P >

Cam 2: e is a send: between these two points of the computation.

" - for every r. z (PPj z implies (=,e) (PIS z Conversely, if P, knows P2 knows. ... P, knows b

w 3: eand later, & is false (this represents knowledge loss),

Case 3:.e is an internal event: then there is a process chain_"P, P 2 ... Pr>

for every r. (zr,e) [PP1 z -z I PI z between these two points of the computation.

0

209

i..',.:-. ,kx - . .::

Crucial to our work is the notion of local 7. ((P know. b) or (P knows b')) implies (P

predicates: a predicate local to p can change in value (b or

only as a result of events on p. We show that local 8. (P know. -b) implies (-P knows b)

predicates play a key role in understanding knowledge g. ((P know. b) and (b imnplies b')) implies
predicates. "" Pknw l
4.1. Knowledge Predicates 10. P knows P knows b - P knows b

Let 6 denote a predicate on system computations 11. P knows -- P know. b - -P knows b

and ob at za its value for computation z. Our 12. P knows c, for any constant c.

predicates are total, i.e. for each x, b at z is either

true or false. We furthermore assume that These facts are easily derivable from the definition
N x [D I y implies (b at z - b at y) for every predicate of knows. We give a proof of (11), whose validity in

b. Thus predicate values depend only upon other domains have been questioned on philosophical

computations of component processes and not on the grounds [3].

way independent events are ordered in a linear Lemma 2: P know. -P knows b = -P knows b
representation of the computation. A predicate c is a 1

constant means c at z - c at y, for all computations Proof: P knows -P knows b at x
= for all y-:x [P1 y : -P knows b at y,

x, y. We now define (P knows b) at x. from definition

- for all r z [P] y: there exists z:.""" y (P] r. -b at z, from definition
Definition: (P knows b) at z for all y:

= there exists z. [P Iz:. -b at z,
z [P] y : b at y since [P] is an equivalence relation

Note that b may itself be a predicate of the form = ,-P knows b at z

Q knows 6' in the above definition. We next note

some facts about knowledge predicates. In the There are situations where multiple levels of
following, z, y are arbitrary computations, b, Y are
arbitrary predicates and P, Q are arbitrary sets ofknwegsuhaPno.Q nwbarueflFor instance, consider a token bus which is a linear
processes. All facts are universally quantified over all sequence of processes among which a token is paed

computations. We use the convention that P knows back and forth; processes at the left or right boundary
Q know. b at x is to be interpreted as (P knows (Q have only a right or left neighbor to whom they may

;, . know. b)) at z. pass the token; other processes may send it to either
1.Pknow. batz- for all : [P1 y P neighbor. There is only one token in the system and

know. b at V
initially it is at the leftmost process. Consider a

2. ziPJ p implies [P know. b at token bus with five processes labelled p, q, r, s, t from

left to right. When r holds the token,
3. (P know.) impies (PUQknows b) rknows ((q know (p does not hold the token)) and

4. (P know. b) implies (6) (a knows (t does not hold the token))

, rtl!5. (P knows b) or (-P know. b) Relations of the form f P Q), with multiple process

S. (P knows b) and (P know. b') - P know, sets arise from predicates with multiple occurrence of
(b and b6) knows;

421.0

il
7K

-i 0~

Fr iProof of (1) follows from definition of knowledgeFor instance:

p knows q knows b at z and local predicates. (2) and (3) follow trivially. (4)
- forall :z[pv: qknowsbat y follows from Q knows b at x = for all y: z I Q I i :
- foralliyz[plyr (foralz. y1[q~z. bat z) bat y =forall y: zIQIy:Pknowsbat y (since b
=foralz.z[pq z: batz

is local to P) = Q knows P knows b at x. (5) follows

4.2. Local Predicates from, (P knows P knows b or P knows -P knows b)

Let b be a predicate on system computations, and - (P knows b or -P knows b) = true. Proof of (6)

P a set of processes. We define a predicate P sure b is important and hen-e is given below as a lemma.J as follows. (7) and (8) are trivially proven from definition.
Definition: (P sure b) at x m I (P knows b) at : or

(P knows 6b) at x] Lemma 3: b is local to disjoint sets P, Q implies

In other words (P sure b) at x means that P knows b is a constant

the value of b at z.

Proof: We show that b at z = b at pull, for all x.We define unsure as negation of sure.

Proof is by induction on length of x.Definition: P uneure b ' --P sure b

b at null - b at null.
Hence, (P unsure b) at x m [(-P knows b) at z and b at (e) = b at x, because event e is not on P or
(-P knows -b) at] e is not on Q, and hence

(xe) [PI x or (z-e) IQI x
Definition: b is local to P = for all z: (P sure b) then the result follows from property ().
at x. 0)

For a system of processes, b is common knowledge

That is, the value of 6 is always known to R. is defined as the greatest fix point of the following

Local predicates capture our intuitive notion of a equation.

predicate whose value is controlled by the actions of

processes to which it is local. b is common knowledge E b and (p knows b) is

common knowledge, for all processes p. Intuitively, b
We note the following facts about local predicates; is common knowledge means b is true, every process

in the following, b is an arbitrary predicate and P, Q knows b, every process knows that every process

are arbitrary sets of processes. knows b, etc.

1. (b is local to P and x P] y) implies
(bat: = bat V) Halpern and Moses [31 have shown that common

2. b is local to Pimplies (b - P know. b) knowledge cannot be gained, if it was not present

3. b is local to P = (-.b) is local to P. initially, in a system which does not admit of

. simultaneous events. The following corollary to,4. b ja local to P implies
' [Q knows b - Q knows P knows b I lemma 3 shows that common knowledge can be

neither gained nor lost in distributed systems.
5. (P knows b) is local to P.

6. b is local to P and b is local to Q and PQ Corollary: In a system with more than one
are disjoint implies b is a constant, process, for any predicate b, b is common knowledge

7. b is a constant implies b is local to P. is a onstant.

S. (P sure b) is local to P.

211

Proof. For any process p, b is common knowledge P, knows... 1 knows b at x and z (PI .

', ffip knows (b is common knowledge). Hence, b is We shall prove Pn knows b at yt.

common knowledge is local to every p. Applying

l emma 3, b is common knowledge is a constant. Frmzsuch , ecnlueta heei

such that,

x [PI ... P l z and z PJ y.

It is possible to show that even weaker forms of From z P 1... P , - IIz and P1 knows.

knowledge cannot be gained or lost in our model of P. - knows (PF knows b) at x, we conclude, using

distributed systems. Process sets P, Q have identical induction, P- knows P knows b at z. Hence, P
knowledge of b means, knows b at z.

P knows b = Q knows b
Since z [fP] y, P, knows b at y.

Corollary: If P, Q are disjoint and have 0

identical knowledge of b then P knows b (and also Corollary: For arbitrary process sets
, .,Q knows b) is a constant.

:P kos)iacosa P., n > 1, predicate 6 and computations z,

Y,

Proof: P knows b is local to P and Q knows b is (P, knows... P 1 knows -Pn knows b at z and

local to Q. From P knows b = Q knows b, they are [PI 'n] y) implies -P. knows b at y

also local to Q and P respectively. The result follows 0

directly from lemma 3. Note: For n = 1 antecedant is, -P knows b at

X.
1 Corollary: If P,Q are disjoint and P sure b = Q

Corollary: Theorem 4 holds with knows replaced
sure b, then P sure b (and also Q sure b) is a by sure.
constant.

0
Theorem 4 can be applied to (1) z 5 y

*4.3. How Knowledge I Transferred (knowledge is lost) and (2) y <_ z (knowledge is

We show in this section that chains of knowledge gained). Using theorem 1, we can deduce that there is

are gained or lost in a sequential manner. a process chain < P, ... P. > in the former case

..nd < Pa " - P > in the latter case. We first prove

Theorem 4: For arbitrary process sets a simple lemma about the effect of receive or sen i on

P P, n > 1, predicate b and computations z, knowledge: we show that certain forms of knowledge

Y, cannot be lost by receiving nor gained by sending.

(P, knows ... knows b at z and x [P •... Pa l)
implies (P. knows b at y) Lemma 4: (How events at a process change its

O r knowledge)

Proof: Proof is by induction on n. For n - 1, Let b be a predicate which is local to P and (z,) a

P knows b at x, z (PI] y implies P, knows b at y, computation where e is an event on P.

trivially. 1. e is a receive: (knowledge is not lost)

Assume the induction hypothesis for some n - 1, (p know. b atz) implies (P knows b at (ze))

n > 1, and assume

212

MI- Y.fI,

2. s is a send: (knowledge is not gained) Theorem 6: (How Knowledge Is Lost:)
(P knows. b at (z~e)) implies (P know. b at x)

3. e is an internal event: (knowledge is neither Let z, y be computations where z < Y,

lost nor gained) P, knows ... Pn knows b at z and -P knows b at
(P know b at :) =(P know b at (z;e)) 1ad-.P nw ay, for arbitrary process sets P 1 ... Pn,, n > 1. Then0

there is a process chain <P... Pn> in (z, y).
Proof. We prove only (1). Consider any z such Furthermore, if b is local to P. then Pn ha a send

that (z;e) I PJ z. We will show b at z and hence it event in (r, y).
follows that P knows b at (,e). n

Since z I z, we have (x;c) [P151 z. Observe that the statements of the two theorems

are not entirely symmetric for receive and send

events. The reason is that every computation

Since b is local to , including a receive must also include the

P know. b = P know. 5 know. b. corresponding send, but not conversely.

From theorem 4, Theorems 4, 5, 6 and their corollaries hold with

knows replaced by sure.
(P knows P knows b at z, z j P 1] z) implies

(_P knows b at z) 5. Applications Of The Results

(5 knows b at z) implies (b at z) We sketch a few applications of the theory

developed so far. A full treatment of these results
This completes the proof. may be found in [8 8.

0

Corollary: (b is local to P5, -P knows b at x, P We show that it is impossible for process P to

knows b at y, z < y) implies (P receives a message in track the change in value of a local predicate of 15,

(Z,)). exactly at all times; P must be unsure about the value
0 of this predicate while it is undergoing change. We

Corollary: (b is loca to 15, P knows b at x, also show that necessary condition for changing a

-P knows b at y, z y) implies (P sends a message local predicate b of 15, is that 5 knows P unsure b, at

in (z, y)). the point of change.

0
Traditional techniques for process failure detection

Theorem 5: (How Knowledge Is Gained:) based on time-outs assume certain execution speeds

Let z, y be computations where z 5 Y, for processes and maximum delays for message

-(P. knows b) at z and (PI knows ... P, knows b) transfer. It is generally accepted that detection of

at y, for arbitrary proeem sets P, ... P., n > 1. failure is impossible without using time-outs, a fact

Then there is a process chain <P, ... Pt> in (z, y). that we prove formally. We use the fact that failure

of a process is local to the process and the process-'Furthermore, if b is local to 7%n then P,, has a receive
does not send messages after its failure; hence other

event in (z, y) such that b at z holds for every prefix z doesno ser n msae aterll if.au heceoters

of y which includes the corresponding send event. preu ab a

0 213 failure.

213~ -

We show that any algorithm, which detects can define belief in terms of isomorphism. Most of

tfgrthe results in this paper are applicable in the first caseL, termination of an underlying computation, requires at
. "but not in the other two cases.

least as many overhead messages, in general, for

detection as there are messages in the underlying Acknowledgement: We are indebted to Shmuel

computation. V. first show that in order for Katz, Joe Halpern, E.W. Dijkstra and Bengt Jonsson

termination to be detected, an overhead message is for their comments. Particular thanks go to Ernie -""
sent by some process, without its first receiving aCoefracrfuradnoftem usipad

I Cohen for a careful reading of the manuscript and

message, after the underlying computation terminates;

this fact is proven directly from the theorem of

knowledge gain, because detecting termination

amounts to gaining knowledge. This work was supported in part by a grant from the
Office of Naval Research under N00014-85-K-0057.

Next we show that a process is sometimes required

to send an overhead message even when the REFERENCES

underlying computation has not terminated, because 1. K. M. Chandy & J. Misrs "Drinking

the computation may be isomorphic (with respect to Philosophers Problem", TOPLAS, October
1984.

this process) to a computation in which the

underlying computation has terminated. Using these 2. M. J. Fischer, N. Lynch & M. Paterson,
"Impossibility of Distributed Consensus

two results, we construct a computation, in which the with one Faulty Procem, Journal of the

number of overhead messages is at least as many as ACM, April 1985.

the number of underlying messages. 3. J. Y. Halpern & Y. Mos: "(Knowledge

6. Discussion And Common Knowledge In A Distributed
Environment", ACM SIGACT-SIGOPS

We have shown that isomorphisms between system Symposium on Principles of Distributed

computations with respect to a process is a useful Computing, Vancouver, Canada, August

concept in reasoning about distributed systems. 1984.

Isomorphism forms the basis for defining and deriving 4. J. Hintikka: "Knowledge and Belief",

properties about knowledge. "Scenarios" have been Cornell University Pres, 1962.

used 17 to show impossibility of solving certain 5. L. Lamport:, "Time, Clocks and the

problems; in our context, a scenario is a computation, Orderings of Events in a Distributed
System", Communications of the ACM,

and isomorphism is the formal treatment of Vol. 21, No. 7, pp. 558-54, July 1978.

equivalence between scenarios. Theorems on 6. D. Lehmann, "Knowledge, Common
knowledge transfer provide lower bounds on numbers Knowledge, and Related Puzzles", ACM

of messages required to solve certain problems. We SIGACT-SIGOPS Symposium of
Principles of Distributed Computing,

have used isomorphism m the basis of fusion theorem Vancouver, Canada, August 1984.

and related isomorphism to semantics of send, receive

and internal events. 7. N. Lynch & M. Fischer, "A Lower Bound
for the Time to Assure Interactive
Consistency", Information Processing

A number of generalizations of this work are Letters, Vol. 14, No. 4, June 1982.
possible: we can define isomorphism based on states 8. K. M. Chandy & Jayadev Misra, "How

of processes, rather than computations; we can Processes Learn", Distributed Computing,
we Vol. 1, No. 1, January 1988, (Published by

introduce the notion of time into computations; weSpriNr V an.
Springer2Ver1g).

., 214

Distributed Computing 1986) i: 40-52

(. Springer-Verlag 1986

How processes learn

K.M. Chandy and Jayadev Misra f
Department of Computer Sciences. University of Texas at Austin. Austin. TX 78712, USA

Jatad .Ier Misra is a professor state but not to the states of other processes.

in the Department of Corn- Many distributed algorithms require that a pro-
puter Sciences at the Unier- cess determine facts about the overall system
sitY of Texas at Austin. His
primary research interests are computation. In anthropomorphic terms, pro-
in the area of distributed com- cesses "learn" about states of other processes in
puring: specification and de- the evolution of system computation. This pa-
sign of networks of as£'11- per is concerned with how processes learn. We
chronous components. He be- give a precise characterization of the minimum
lieres that sound practical
techniques must be based on information flow necessary for a process to de-

N elegant theories. termine specific facts about the system.
The central concept in our study is that of

isomorphism between system computations with
respect to a process: two system computations
are isomorphic with respect to a process if the
process behavior is identical in both. In anthro-

Mani Chandy is a projessor pomorphic terms. "system computations are

of Computer Science and isomorphic with respect to a process" means
Electrical Engineering at the the process cannot distinguish between them.
Uni ersity of Texas ut Austin. Many correctness arguments about distrib-

puter Sciences Department. uted systems have the following operational fla-
His research interests are in vor: "I will send a message to you and then
distributed systems and per- you will think that I am busy and so you will
formance analysis. broadcast ...". Such operational arguments are

difficult to understand and error prone. The
basis for such operational arguments is usually
a "process chain": a sequence of message trans-
fers along a chain of processes. We advocate
nonoperational reasoning. The basis for non-
operational arguments is isomorphism; we re-
late isomorphism to process chains. Algebraic

I Introduction properties of system computations under iso-
morphism provide a precise framework for cor-

Processes in distributed systems communicate rectness arguments.
with one another exclusively by sending and It has been proposed [3, 6] that a notion of
receiving messages. A process has access to its "knowledge" is useful in studying distributed

computations. In earlier works, knowledge is
O1jprint requests to: K.M.Chandy introduced via a set of axioms [4]. Our defini-
This work was supported in part by a grant from the tion of knowledge is based on isomorphism.
Office of Naval Research under N00014-85-K-0057 Our model allows us to study how knowledge

K.M. Chandy and J. Misra: How processes learn 41

is -gained- or "lost". One of our key theorems distinguished; for instance, multiple occurrences
states that knowledge gain and knowledge loss of the same message are distinguished by affix-
both require sequential transfer of information: ing sequence numbers to them.
if process q does not know fact b and later, p Let :be any sequence of events on com-
knows that q knows b, then q must have com- ponent processes of a distributed system. The

* municated with p. perhaps indirectly through projection of :on a component process p. de-
(~iother processes, between these two points in the noted by :p. is the subsequence of : consisting

computation; conversely, if p knows that q of all events on p. A finite sequence of events
knows b and later. q does not know b then p is a system computation of a distributed system
must have communicated with q between these means (1) for all processes p. :P is a process
two points in the computation. In the first case, computation of p and. (2) for every receive
the effect of communication is to inform p of q's event in :. say receipt of message mn by process

* knowledge of b. Analogously, in the second p. there is a send event, of sending in to p.
case, the effect of communication is to inform q which occurs earlier than the receive in :: this
of p's intention of relinquishing its knowledge send event will be called the send event corre-
(that q knows b). Generalizations of these re- sponding to the receive. We leave it to the re-
sults for arbitrary sequences of processes are ader to show that system computations are pre-
stated and proved as corollaries of a general fix closed.
theorem on isomorphism. In this paper we consider a single (generic)I

We use the results alluded to in the last distributed system. For instance, when we say
paragraph for proving lower bounds on the ..: is a computation" we mean that : is a corn-
number of messages required to solve certain putation of the distributed system considered
problems. We show, for instance, that there is here. We use computation to mean sYstem coin-
no algorithm to detect termination of an under- putation when no confusion can arise.
lying computation using only a bounded num-
ber of overhead messages. Notation. We use x, v. V, to denote compu-

tations. p. q for processes and P. Q for process
sets; these symbols may be used with subscripts

2 Model of a distributed system or superscripts. The concatenation of two se-
quences y and z will be denoted by (y. z). For

A distributed system consists of a finite set of sequences y and z:5 z denotes that v is a
processes. A process is characterized by a set of prefix of :; in this case (y,.z) denotes the suffix
process computations each of which is a Finite of : obtained by removing y from z. The empty
sequence of events on that process. Process sequence will be denoted by mill. The symbol
computations are prefix closed. i.e. all prefixes = is used to denote equalities among sets and
of a process computation are also process com- among predicates. The symbol =_is used for
putations (of that process). An event on a pro- definitions. The set of all processes in the sys-
cess is either a send, a receive or an internal tem will be denoted by D and for any process
event. A send event on a process corresponds to set P. P =D -P.

4 sending a message to another process. A
receive event on a process corresponds to re-
ception of a message by the process. There is 3 Isomorphism
no external communication associated with an
internal event. For a set of processes P, a send We define relation [p] on the set of system
event by P is a send event by some component computations as follows.
process of P to a process outside P, similarly a
receive event by P denotes receipt by some Definition. For system computations x. i:
process in P of a message sent from outside.P. X] (P YdCommunication among processes in P are in-
ternal events of P. We use -e is on P". for event In other words. x[p]y means p's computation
e and process set P. to denote that e is an event is the same in system computations x and *v. In
on some process in P. We rule out processes this case, we say x, Y. are isomocpikic with respect
which have no event in any computation. We to p. For a process set P. define relation [P]. on
assume that all events and all messages are the system computations. as follows.

I%

42 K.M. Chandy and J. Misra: How processes learn

Definition. x[P] y'= for all p in P, x[p] y. Hence, [PQ] = [P] o [Q] where "o" is the re-
lational composition operator. This operator is

Thus x oP]y means that, given only the com- associative (from properties of relations). In
putations of processes in P we cannot dis- terms of the isomorphism diagram, x[P ... P.] z
tinguish x from y. From definition, x[{ }]y, for means there is a path from x to : whose edges
all computatiwis xY where { } denotes the are labelled with Q0 ,Q., respectively, where
empty set. Observe that [P] is an equivalence Q 2 P, for all i.
relation.

It is convenient to represent all such iso- Example I (contd.). We have y [p q] wv and
morphism relations by an isomorphism diagram: w[qp]y. Also, trivially, y[qp]-, y[qpq]:,
an undirected labelled graph whose vertices are etc. 0
computations and there is an edge labelled [P]
between vertices x, y if P is the largest set of We note some properties of isomorphism
processes for which x[P] y. Observe that every relations. In the following. P, P1,..... P,, Q, de-
vertex has a self loop labelled [D] where D is note arbitrary process sets and x, y, z denote
the set of all processes in the system. Note that arbitrary computations.
x [D]y, x *Y. implies y is a permutation of x. 1. [P] is an equivalence relation.

2. (Substitution) ([#l]=[6]) implies ([2 fir]
Example 1. Consider a system with two pro- =[67]) for arbitrary sequences of process
cesses, p and q, for which part of the isomor- sets , P, 7., 6.
phism diagram, showing the relationships 3. (Idempotence) [PP] = [P]
among four system computation. is given be- 4. (Reflexivity) x[P ... P] x
low. 5. (Inversion) x[P ... P]y=y[P... P]x

6. (Concatenation) For 0 < m < n,
From the diagram x[p] y, but not x[q]y. This 3y: x[P ... P.] y, y[P. P] z
means p has the same computations in both x =xCP ... P P. I... !']1
and Y, whereas q's computations in x and y 7. [PuQ]=([P]r[Q])
differ. Computations x and : have the same 8. (Q2P)=(_Q]C[P])
computations for both p and q; hence one is a 9. (P=Q)--([P]=[Q)
permutation of the other. There is no direct 10. Q _P implies ([QP]=[P]=[PQ])
relationship between y and w; neither y[p] w These properties follow from properties of
nor y[q]wi holds. However, there is an indirect relations and our model. We only sketch a
relationship between y and w because y[P] : proof of one part of property 8:
and :[q] iv. We explore such indirect relation-
ships next. ID ([Q] 5 [P]) implies (Q 2 P).

Definition. Let n>O and P, be process sets, If Q3?P then there is a process p in P-Q.
05i5n. From our model, p has an event e in some

computation (x:e). Then x[Q](x:e) and
x[Po...PJ: x[P...P_,]y and y[P]z, for -x[P](x;e). Hence [Q] $ [P].
some computation y.

3.1 Process chains

As noted in the introduction, the basis for
many operational arguments are process
chains: process p informing q which in turn,
informs r etc. One of our goals is to replace

1)p.q(1 [p] such concepts by algebraic properties of system
computations. In this section we show how
process chains are related to isomorphism. We
first define proces chains; this definition is

C . ,,X along the lines suggested by Lamport [5].
01) \ iql , Definition. For events e, e' in a computation

Fig. I. An isomorphism diagram e---e' means:

K.M. Chandy, and J. Misra: How processes learn 43

1. e' is a receive and e is the corresponding send, event e' on P and hence el--Le' and therefore

or el is in y; the relative order between e,, e2 is
2. events e, e' are in the same process corn- maintained by our construction.

putation and (e=e' or e occurs earlier than Next, we show that y[P,]:; that is, every
e'), or event on P that is in : is also in y. This follows

3. there exists an event e" such that e-"-e" and trivially for events on P that are in x. Let e' be
le"--oe '. an event on P that is in (x,:). Since e'-.e', e' is

For brevity we write e--e' when the corn- also in E and hence in y.
putation : is understood from context. We will Finally, we show that there is no process
write eo-e 1--.... e,_-.e., as shorthand for chain <P...P,_-> in (x,y). If there is such a
eo -- el and ... and e_ 1-*e,. Observe that e-e process chain, consider its last event e. Accord-
for every event e in Z. A computation z has a ing to our construction, event chain e-.e' exists
-rocess chain <PP ... P> means there exist in (x,:), where e' is some event on P. Hence
events eo, el,...e,, not necessarily distinct, in : there is a process chain (P, ... P)> in (x,:). con-
such that event e, is on P, for all Oi5n, and tradicting our assumption. C1
CO ' We note that the two conditions in the last

sentence of the theorem are not exclusive. Con-Obserration I. Any occurrence of "P" in a pro- sider two computations :,:' where

cess chain may be replaced by "PP", or vice '

versa, since for any event e on P, e--*e. : is <P sends m to R; R receives m
from P;R sends m' to Q;

Observation 2. Let x be a sequence consisting of Q receives m' from R>,
a subset of events from a computation y. Sup- ' is <R sends in' to Q: Q receives m' from R>
pose that for every event e in x: every e', where
e' -le, is also in x, and e'--.e. Then x is a In z, though there is a process chain <PRQ>.
computation. there is not a "true" dependence from P to R

to Q: R sends m' to Q independent of receiving
in from P (as shown in z'). Note that null [P] :'

3.2 Relationship between isomorphism and [Q] :, and hence null [PQ] :, though
and process chain (null,.) has a process chain <PQ>.

Theorem 1. (Fundamental theorem of process 3.3 An application of isomorphism:
chains). Let : be a computation and x a prefix of how to construct a computation
. Let P, P2 ... P, n2_ 1, be sets ol processes. by fusing separate ones

Then x[PP2 ... P]z or there is a process chain
(P P2 ... P> in (x, =). [In this section, we show an application of iso-

morphism: we give a construction to "fuse"
Proof. Assuming that there is no process chain two computations to obtain a new compu-<P,...P> in ix, z), we show that x[P ... P], z. ration, provided certain types of paths exist in
Proof is by induction on n. For n = 1, absence the isomorphism diagram. We motivate the dis-
of a process chain (P> in (x,:) means that cussion by the following observations. Suppose
there is no event on P in (x,-) and hence (x;E) and (x;E) are computations where all
x[P]z. For n> 1, we show that there is some y, events in E are on a process set P and all
xy, such that there is no process chain events in E are on P. Then, from definition.
<P ...-P-I> in (x, y) and yCP] :; the result then (x: E; E) and (x: E:E) are also computations. be-
follows by inductive argument. cause events in E, E are independent and hence

Let E be the subsequence of events in (x,:) may be fused in arbitrary order. A similar re-
consisting of the set of events {ele-.e' where e suit appears in Fischer et al. [2]. The following
is in (x, :) and e' is some event on P). Let y lemma is a generalization of this obervation.
=(x, E). First, we show that if eL--"-e2 and e2
is in 3' then e, is also in v and e, 1-- e2 ; this Lemma I. Let x. ,: he computations where
guarantees (from observation 2) that v is a corn- x<5)- and x:5:. Let P.Q be suciat PuQ=D.
putation. This result follows trivially when e2 is x[P]y and x[Q]:. Then there exists a con-
in x. If e2 is in (x,:) then e2---. e'. for some putation w ihere x<5w, y[Q] w and :[P] w. [

-- - ,

44 K.M. Chandy and J. Misra: How processes learn

U a

a 0

L 0 P 0

Fig. 3. Diagramatic representation of fusion theorem

w r

FiR. 2. Isomorphism diagram depicting fusion / \

The relationships among x, y. z and w are P
represented by the following commutative iso-
morphism diagram.

Prool. Let w = x; (x. y); (x, ;,. U0
From the condition of the lemma. (x. v) has

events only on P and (x,-) has events only on
Q. Since PuQ=D, PnQ={) and hence no
process has events in both (xy) and (x, :). It

9 follows, from definition of computations, that w
is a computation. Also y[Q]w. :[P]w and
x < w. as required for proof of the lemma. C3

Note that, in the construction of Lemma 1, Fig. 4. Intermediate step in fusion theorem
all events from E and E were present in the
fused computation. We prove a far more gener- (x, :). Then there is a computation w where,
al result below. We show that for any two < [P] w and : [P] w. That is. w consists of
arbitrary computations y and :, the projected a e o y and a eents of
computations, y and :p, may be fused to form all events on P from y and all events on P from
a new computation provided there is a com- Z. C]

putation x which is a prefix of both y and -, Proo According to Theorem 1. absence of pro-
and no message sent by P in (x. y) is received Poj codn oTerm1 bec fpo
by P in (x, y) and no message sent by P in (x, :) cess chains as given in this theorem means that,
is received by P in (x, :). This makes intuitive x[PP] and x[PP]:.
sense: processes in P can execute all events in y m
given only that processes in P execute all events morphism diagram in Fig. 3. To prove that
upve oxnd siiarly o r n executs a events such a w exists, label the intermediate point
up to x and similarly for executions of events between x, y as u and between x,- as t" in this
on P up to :. However, the statement and proof figure. Now we apply Lemma 1 to X, L, c to
of this result are difficult without the notion of
isomorphism. We note that the result may be obtain a w, as given in Fig. 4.Now u [P]l y and u [P] w; hence y [P] Vt. Sim-
easily generalized to fusions of arbitrary num- ila N[P]w he theore. Sim-
bers of computations under similar constraints. ilrly :[P] wv. This proves the theorem. Rela-

tionships among x, y, :, i, v, w are shown in
Theorem 2. (Fusion of computations). Consider Fig. 5. 0
system computations x, y, : where x: y and x-:5 The fusion theorem is used later to obtain
Let P be a set of processes such that there is no lower bounds on the number of messages re-
process chain, (1) <PP> in (x, y) and (2) <PP> in quired to solve certain problems.

..

.. I!

K.M. Chandy and J. Misra: How processes learn 45

Theorem 3. Let (x; e) be a computation where e
is an event on P.

Case 1. e is a receive:

for every :: (x: e) [PF] z implies x[PP] z

U 0 /V Case 2. e is a send:

for every z:x[PP] z implies (x;e)[PP]:

Case 3. e is an internal event:

for every Z: (x;e)[PP]:=x[PP]:

Z Proof. We will prove only Case 2: other cases
Fig. 5. isomorphism diagram depicting proof of fusion are similarly proven.

x [P P]: implies there exists y.x[P]y and
y[P] Z.

3.4 Semantics of event types in terms From principle of computation extension, (Y: e)
of isomorphism is a computation and (x; e) [P] (y, e). Also.

We now use isomorphism to state and derive (, e)[P]y. Hence, (x; e)[PP] :, and therefore.
some important facts about various types of (x; e) [PP]:. 0
events. First, note that a process carries out an This theorem captures the intuitive notion
internal event or sends a message depending on that the set of possible computations. isomor-

C its own computation alone. Therefore, if a phic with respect to P, can only shrink in size
process takes such a step in a computation x, it as a result of a reception as computations
will also do so in y, if x. y are isomorphic with which do not include the corresponding send
respect to this process. An analogous result are ruled out. Similarly, the set of possible com-
holds for internal and receive events. The fol- putations, isomorphic with respect to P cannot
lowing principle, which states these facts for- shrink as a result of a send: after the send.
mally, may be proven from the definition of additional computations which accept the mes-
system computation. sage sent are isomorphic while all prior isom-

orphic computations remain isomorphic. An in-
Principle of computation extension: ternal event can neither expand nor shrink theset of isomorphic computations.
Let e be an event on P.
1. e is an internal or send event: (x[P]y and
(x~e) is a computation) implies (y;e) is a com- 4 Knowledge
putation. As we have remarked earlier. predicates of the
2. e is an internal or receive event: (x;e)[P] y Aspe h remaked aie peiesftimplies 4y-e) is a computation, where (y-e) is type P knows b at x may be defined using
thpies s equenc isob puta y ting werom () is isomorphism. We explore properties of such
the sequence obtained by deleting e from y. E predicates in our model. We show that they

Note. In (1). (x~e)[P] (-;e) and in (2), x[P](y satisfy the "knowledge axioms- as given in

-e). [3,6]. We prove a general result which shows
that certain forms of knowledge can only be

Corollary. Let e be a receive event on P and let gained or lost in a sequential fashion along a

the corresponding send event be on Q. chain of processes. That is. if h is false for a
U ccomputation and later. P knows P, knows ... P
(x[PuQ]y and (x:e) is a computation) implies knows b (this represents knowledge gain), then
(y;e) is a computation. C3 there is a process chain <PP_ I ... P> between

these two points of the computation. Con-
Proof. e is an internal event of PuQ. 0 versely, if PI knows P2 knows... knows h and

later. b is Jalse (this represents knowledge loss).

The following theorem follows from the prin- then there is a process chain (P 1', ... P,,> be-
ciple of computation extension. tween these two points of the computation.

ip

46 K.M. Chandy and J. Misra: How processes learn

Crucial to our work is the notion of local Lemma 2. P knows- P knows b= P knows
predicates: a predicate local to p can change in b. Q
value only as a result of events on p. We show
that local predicates play a key role in under- Proof. P knows , P knows b at x
standing knoudedge predicates. =for all y: x [P] y: - P knows b at y,

from definition
Jj ;.. 4.1 Knowledge predicates =for all y: x [P] y: there exists _z: y [P] ::~b at:,

Let b denote a predicate on system compu- -there exists:: x[P]: -bat:.

tations and "b at x" its value for computation since [P] is an equivalence relation
x. Our predicates are total, i.e. for each x, b at X si P knows b at x. q

is either true or jalse. We furthermore assume

that x[D]y implies (b at x=b at y) for every There are situations where multiple levels of
predicate b. Thus predicate values depend only knowledge such as, P knows Q knows b, are

y upon computations of component processes and useful. For instance, consider a token bus which
L "I not on the way independent events are ordered is a linear sequence of processes among which a

in a linear representation of the computation. A token is passed back and forth, processes at the
predicate c is a constant means c at x = c at y, left or right boundary have only a right or left
for all computations x,y. We now define (P neighbor to whom they may pass the token;
knows b) at x. other processes may send it to either neighbor.

There is only one token in the system and
Definition. (P knows b) at x = initially it is at the leftmost process. Consider a
for all Y: x [P] y: b at y token bus with five processes labelled p, q, r, s. t

Note that b may itself be a predicate of the from left to right. When r holds the token,

form Q knows b' in the above definition. We r knows ((q knows (p does not hold the token))
next note some facts about knowledge pre- and
dicates. In the following, x, y are arbitrary com- (s knows (t does not hold the token)))
putations, bb' are arbitrary predicates and P,Q Relations of the form [PQ], with multiple
are arbitrary sets of processes. All facts are process sets, arise from predicates with multiple
universally quantified over all computations. occurrence of knows;
We use the convention that P knows Q knows b For instance:
at x is to be interpreted as (P knows (Q knows
b)) at x. p knows q knows b at:

1. P knows b at x = for all y: x [P]y: P knows =for all y: x[p]y: q knows b at v

bat v = for all y: x[p]y: (for all :: Y[q] :: b at:)

2. x[P]y implies [P knows b at x = P knows b =for all:: x"pq]:: bat:

at Y] 4.2 Local predicates
3. (P knows b) implies (PuQ knows b)
4. (P knows b) implies (b) Let b be a predicate on system computations.
5. (P knows b) or (- P knows b) and P a set of processes. We define a predicate
6. (P knows b) and (P knows b') = P knows (b P sure b as follows.

and b')
7. ((P knows b) or (P knows b')) implies Definition. (P sure b) at x=((P knows b) at x or

(P knows (b or b')) (P knows - b) at x).
8. (P knows - b) implies (-,P knows b) In other words (P sure b) at x means that P
9. ((P knows b) and (b implies b')) implies knows the value of b at x.

(P knows b') We define unsure as negation of sure.
10. P knows P knows b = P knows b
11. P knows - P knows b = - P knows b Definition. P unsure b a- P sure b.
S12. P knows c or P knows -- c. for any constant c.

Hence, (P unsure b) at x = (- P knows b) at x
These facts are easily derivable from the defini- and (P knows - b) at x].
tion of knows. We give a proof of (11), whose
validity in other domains have been questioned Definition. b is local to P=--for all x: (P sure h)
on philosophical grounds [3]. at x.

J, j

K.M Chandy and J. Misra: How processes learn 47

That is, the value of b is always known to P. knowledge can neither be gained nor lost in
Local predicates capture our intuitive notion of distributed systems.
a predicate whose value is controlled by the
actions of processes to which it is local. Corollary. In a system with more than one pro-

We note the following facts about local pre- cess, for any predicate b, b is common knowledge
dicates; in the following, b is an arbitrary pre- is a constant. C]
dicate and P. Q are arbitrary sets of processes.

I. (b is local to P and x[P]y) implies (b at x=b Proof. For any process p, b is common knowl-

at y) edge = p knows (b is common knowledge). Hence. b

2. b is local to P implies (b = P knows b) is common knowledge is local to every p. Apply-

3. b is local to P b) is local to P. ing lemma 3, b is common knowledge is a con-

4. b is local to P implies [Q knows b = Q knows stant. C
P knows b] It is possible to show that even weaker

5. (P knows b) is local to P. forms of knowledge cannot be gained or lost in
6. b is local to P and b is local to Q and P, Q are our model of distributed systems. Process sets

disjoint implies b is a constant. P, Q have identical knowledge of b means.
7. b is a constant implies b is local to P. P knows b = Q knows b
8. (P sure b) is local to P.Pknwb=Qkosb

Proof of (1) follows from definition of knowl- Corollary. If P, Q are disjoint and hare identical
edge and local predicates. (2) and (3) follow knowledge of b then P knows b (and also Q
trivially. (4) follows from Q knows b at x = for knows b) is a constant. 0
all y: x[Q]y": b at y=for all y: x[Q])v: P
knows b at y (since b is local to P)=Q knows P Proof. P knows b is local to P and Q knows h is

N knows b at x. (5) follows from, (P knows P local to Q. From P knows b=Q knows b. they
knows b or P knows -P knows b) = (P knows b are also local to Q and P respectively. The
or - P knows b) = true. Proof of (6) is impor- result follows directly from lemma 3. 0
tant and hence is given below as a lemma. (7)
and (8) are trivially proven from definition. Corollary. If P, Q are disjoint and P sure b = Q

sure b. then P sure b (and also Q sure b) is a

Lemma 3. b is local to disjoint sets P. Q implies constant. C
b is a constant. 0]

4.3 How knowledge is transferred
Proof. We show that b at x=b at null, for all x. We show in this section that chains of knowl-
Proof is by induction on length of x. edge are gained or lost in a sequential manner.

b at null= b at null.
b at (x:e)=b at x, because event e is not on P Theorem 4. For arbitrary process sets P P.
or e is not on Q. and hence (x;e)[P]x or n _ 1. predicate b and computations x.y.
(x;e)[Q]x; then the result foilows from proper- (P knows ... P knows b at x and x[P ... P] y)

0ty(). C1 implies (P knows b at Y). [

For a system of processes. b is common Proof. Proof is by induction on n. For n=l. PI
knowledge is defined as the greatest fix point of knows b at x. x [P] y implies P, knows b at Y.
the following equation. trivially.

b is common knowi'edge S b and (p knows b) trivially.
is common knowledge, for all processes p. In- Assume the induction hypothesis for some
tuitively. b is common knowledge means b is n- 1, n> 1. and assume
true, every process knows b. every process knows P knows ... P knows b at x and x [... P] .
that every process knows b, etc.

Halpern and Moses [3] have shown that We shall prove P knows b at i.
common knowledge cannot be gained, if it was From x[P I ... P] y. we concwe that there is

B not present initially, in a system which does not a ; such that,
admit of simultaneous events. The following
corollary to lemma 3 shows that common x[P... P J: and :[P]y.

ii

48 K.M. Chandy and J. Misra" How processes learn

iFrom xP..P. and Pknows ... P knows Corollary. (b is local to P, - P knows b at x.P

(P knows b) at x, we conclude, using induction, knows b at y, x S y) implies (P receives a message
P-, knows P knows b at z. Hence, P knows b in (x, y)). C3

I tit Z.

Since : [P..y, P knows b at y. C3 Corollary. (b is local to P, P knows b at x, - P
knows b at y, x y) implies (P sends a message in

Corollary. For arbitrary process sets P ... P, (x, y)). "
n > I. predicate b and computations x, y,

(P knows ... P knows , P knows b at x and Theorem 5. (How knowledge is gained) Let
- x, y be computations where x5 y, -(P knows b)

at x and (P knows ... P knows b) at y, for arbi-

Note. For i = 1 antecedant is, -P knows b at x. trary process sets P... P, n;> 1. Then there is a
process chain _.... P > in (x, y). Furthermore, if'

Corollary. Theorem 4 holds with knows replaced b is local to P then P has a receive event in
bv sure in "P knows". (x, y) such that b at z holds for every prefix : of

y which includes the corresponding send
Theorem 4 can be applied to (1) x y (knowl- event. 0
edge is lost) and (2) y__<x (knowledge is gained).
Using theorem 1, we can deduce that there is a Theorem 6. (How knowledge is lost) Let x. y
process chain (P ... P> in the former case and be computations where x:5y, P knows ... P
(P... P> in the latter case. We first prove a knows b at x and - P knows b at y, for arbitrary
simple lemma about the effect of receive or process sets P... P, n >_ 1. Then there is a process
send on knowledge: we show that certain forms chain (P ... P> in (x, y). Furthermore, if b is
of knowledge cannot be lost by receiving nor local to P then P has a send event in (x, y). C3, r gained by sending.g e s iObserve that the statements of the two theo-

Lemma 4. (How events at a process change its rems are not entirely symmetric for receive andknowledge) send events. The reason is that every compu-
tation including a receive must also include the

Let b be a predicate which is local to P and corresponding send, but not conversely.
(x; e) a computation where e is an event on P.

1. e is a receive: {knowledge is not lost) 5 Applications of the results
(P knows b at x) implies (P knows b at (x; e))

2. e is a send: {knowledge is not gained) We discuss a few applications of the theory
(P knows b at (x; e)) implies (P knows b at x) developed so far in the paper.

3. e is an internal event:
{knowledge is neither lost nor gained)
(P knows b at x)=(P knows b at (x;e)). 0 5.1 When is a process unsure about a predicate?

We show that it is impossible for processes P to
Proof. We prove only (1). Consider any z such track the change in value of a local predicate of
that (x; e)[P]:. We will show b at z and hence P, at all times; P must be unsure about the
it follows that P knows b at (x; e). value of this predicate while it is undergoing
Since :[P] z, we have (x; e)[PP] :. change.

From theorem 3, since e is a receive, x[PP] Lemma 6. (Interval of uncertainty:) Let b be a
-. Since b is local to P, predicate local to P. Let, b at x*b at (x:e)]Or

P knows b= P knows P knows b. some computation (x; e). Then P unsure b at x
and P unsure b at (x;e). C]

From theorem 4,
Proof. Since b is local to P and its value chang-

(P knows P knows b at x, x[PP]) implies es as a result of event e, e is not on P. There-
(P knows bat :) fore. x[P](x; e) and hence P knows b at x= P

knows b at (x;e). Since b at x*b at (xe). both
knows b at) implies (b at) P knows b at x and P knows b at (x:e) are false.
This completes the proof. C3 Analogously, P knows -b at x and P knows

K.M. Chandy and J. Misra: How processes learn 49

b at (x; e) are both false. This completes the We model failure of P as follows. Let f be a
proof. C3 local predicate of P denoting that P has failed.

We assume that (l)f is initially false, and (2) P

event e on P which changes the value of local may fail at any time, i.e. for every x for which
pedicte o P? It follos that Pau be la -f(x), there is an internal event e on P such
predicate b of P? It follows that P must be that f(x; e) and (3) P sends no message as long
unsure about b for event e to occur. Further- as f holds. Under these constraints, we show
more, we show that if e is internal or send then that P is always unsure of failure of P. In fact,
a necessary condition for occurrence of e is that we show that P knows P unsure f at all com-

knows P unsure b before application of e. putations y. Note that we do not require failure
Theorem 7. Let b be local to P. For a com- to persist, i.e. it is entirely possible to have

putation (x: e), where x < y, f (x) and - f (y).

b at x b at (x;e) Theorem 8. P knows P unsure J at y, for all
(P knows P unsure b) at x, if e is an internal or 3, []
send event on P, Proof. If - f(y), there is an internal event e on
(P knows P unsure b) at (x; e), if e is internal or P such that f(y; e). From Theorem 7, P knows
receive on P 0 P unsure f at y. If f (y), then from the fact that f

Proof. Consider any y for which x[P]y. From is false initially, there is some (x; e). (x: e)!; v.
the principle of computation extension, (y;e) is such that, -f(x) and f(x;e). Without loss in
also a computation; hence (x; e)[P](y; e). generality, we may assume that P stays failed

b is local to P. hence: b at x = b at y after (x; e) until y. Since e is an internal event
and P stays failed after (x;e), there is no send

and, b at (x;e)=bat (y;e). event on P in (x, y). Hence. from corollary to
From, b at x * b at (x; e) it follows that : b Theorem 7, P knows P unsure fat y. El

at y * b at (y; e).
Hence, from lemma (6), P unsure b at y.
From the definition of knowledge, P knows 5.3 Mutual exclusion

P unsure b at x. The other part is similarly Consider a system of processes in which every
proven. 12 process p has a local predicate cs and for

every pair of processes p, q and every compu-Corollary. Let b be local to P. For a comp!1- tto ,~ n s)a .Itiiey s

tation (x; e), where e is an internal event on P, tation x, -(cs and csq) at x. Intuitively. cs
if: denotes that p is in its critical section and the

restriction that no two processes can simulta-
b at x*b at (xe) neously be in their critical sections. is captured
then for any y, x y, where P has no send event by the last requirement. We show that in everyin (x,y): computation of a solution to the mutual ex-clusion problem (in our model), there is a pro-
P knows P unsure b at y. [cess chain (Pi ... p.>, where p, is the ith process

to enter its critical section.
Proof. From Theorem 7, P knows P unsure b at t

x. Since P sends no message in (x, y), from Theorem 9. For anv x. v. x5 v. csp at x and csq
Lemma 4, P can lose no knowledge and hence, at 3' implies that there is a process chain (pq> in

knows P unsure b at y. C3 (x. 3). El

5.2 Detection of process failure is impossible Proof. Observe that csp implies -c.sq. and -csq

Traditional techniques for process failure de- implies (q knows -csq). Also. csq implies (-qknows ~ cs). Hence, (csp at Y) implies (p knows
tection based on time-outs assume certain exe- q knows ,csq at x) and (cs at y) implies (q
cution speeds for processes and maximum de- qknows cs at . q rlies
lays for message transfer. It is generally accept- knows -csq at 3). The result follows from theo-

ed that detection of failure is impossible with- rem (6). l --

out using time-outs, a fact that we prove for- We can show. based on the observation
mally. given below, that a solution to the distributed

%'

I-n

di50 pioo hr rbem a paig i 1 ain K.M. Chandy and J. Misra: How processes learn

dinng hilsopersprolemapparig i [1 taion bu canotaffct t.The overhead corn-
reqire nomor thn ticethenumber of putation may have its own associated states

mesae ina pia.cee I h iti- adi may send messages (to the overhead com-
uteddinng hiloophrs robem, hilsopers putation at the other process) even when the

aeplaced at-ertices of an undirected graph underlying computation is waiting to receive.
and one fork is placed on each edge. A philo- However, a message is received only when the
sopher requires forks on all incident edges to underlying computation is waiting to receive.
eat and hence neighboring philosophers cannot We require that whenever the termination de--
eat simultaneously. tection algorithm reports termination, thep underlying computation has terminated (both
Observation. For neighboring philosophers p~q, processes are in receiving state and there is no
there is a process chain (pq> in (x, y) where p underlying message in channels); furthermore,
eats at x, q eats at 'rand x_-y. Hence at least for every computation x in which the underly-
one message must be sent by p to q between an ing computation has terminated, there is a com-
eating session by p and a subsequent eating putation y,x:5-y, in which termination is report-
session by q. The solution in [1] employs two ed by the overhead computation at one of the
messages between an eating session by p and a processes.
subsequent eating session by q. We show that for any kk :O. there is a

computation in which k underlying messages
5.4 Complexity of termination detection are sent and received and at least k overhead

messages are sent. The plan of the proof is as
We show that any algorithm which detects ter- follows. We first show that in order for termi-
mination of an underlying computation re- nation to be detected, an overhead message is
quires at least as many overhead messages, in sent by some process, without its first receiving
general, for detection as there are messages in a message, after the underlying computation
the underlying computation. We prove our re- terminates; this fact is proven directly from the
sult by considering a specific underlying corn- theorem of knowledge gain, because detecting
putation. termination amounts to gaining knowledge.

Consider a system of two processes A, B in Next, we show that a process is sometimes
which messages may be sent from A to B and required to send an overhead message even
from B to A. Each process is initially in a when the underlying computation has not ter-
tossing state. Each process in tossing state de- minated, because the computation may be
cides nondeterministically (by a coin toss, for isomorphic (with respect to this process) to a
instance) to enter either a receiving or a send- computation in which the underlying compu-
ing state. A process in the receiving state waits tation has terminated. Using these two results.
until it receives a message and then returns to we construct a computation, of the required
the tossing state. A process in the sending state type, for any k, k 2O .
sends a message and then returns to the tossing
state. If both processes are in the receiving state Theorem 10. For any k, k -O. there is a corn-
and every message sent has been received, then putation in which k underlying messages are sent
both processes will remain waiting forever. The and received and at least k overhead messages
goal of the termination detection algorithm is are sent. C]
to detect such a situation.

In the sequel, we use underlying computation Proofs. We will prove a slightly stronger result.
I .~<to mean the computation associated with coin J(k), for any k, k O, where 1(k) is: there is a

tossing, sending and receiving of messages as computation in which k underlying messages
described above. The termination detection al- are sent and received, at least k overhead mes-
gorithm superimposes an overhead computation sages are sent and both processes are in toss-
on the underlying computation at each process; ing state at the end of the computation. Proof
we use computation to mean the underlying is by induction on k.
computation and overhead computation togeth- For k=O: 1(0) holds for the null compu-
er. Overhead messages and underlying messages tation, from the initial condition.
belong to the corresponding computations. Let x be a computation for which 1(k) holds

The overhead computation at a process can for some k, k :0. We show a computation in
observe the state of the underlying compu- which I(k-+fIl) holds.

i7_7 7771 7

K.M. Chand) and J. Misra: How processes learn 51

Let tr4 (tr 8) denote an internal event at A(B) in terms of their states. The notion of isomor-
whereby the process transits from tossing state phism between computations could be defined
to receiving state, similarly, let tsA(tsB) denote in terms of process states as follows: two com-
the transition from the tossing to sending state. putations x and y are state-isomorphic with re-

Consider the computation x'=(x;trA; trB). spect to a process p means the state of p after x
Since no underlying message is in transit in x is the same as its state after y. Observe that x
and both processes are waiting to receive in and y are isomorphic with respect to a process
x'. x' has a terminated underlying computation. implies they are state-isomorphic with respect to

For each process. "process is in receiving that process. With knowledge defined in terms
state" is a local predicate of the process. This of state-isomorphism, a process may lose
predicate value, for each process, isfalse at x. If knowledge by an internal event, that is, by
a process (say B) detects termination at some merely by changing its state. However. knowl-
v.-x'<Y, then B knows A is in receiving state at edge can be gained only be receiving messages.
y. Therefore, B gains knowledge about A and, In other words, processes may "forget" on their
applying the knowledge gain theorem (theo- own but cannot learn without receiving infor-
rem 5), there is a process chain <A, B> in (x', y). mation. The theorem of knowledge transfer ap-
Therefore, in general, either there is a process plies even with knowledge defined in terms of
chain (A B> or a process chain (B A> in (x, y). state-isomorphism. This is an area worth pursu-
Let y' be such that x < y' <y, (x, V') contains no ing, as it may provide insight into designs of
process chain <A B> or <BA> and (x,y') con- processes.
tains a message send (which must be an Our model does not have the notion of
overhead message) by some process. say A. time. If there is a global clock common to all

Let w=(x;trA, tsi; B sends underlying mes- processes then processes may learn or forget
sage). Since there is no process chain <A B> or merely by the passage of time. For instance, in
<BA> in (x,y') or (x. w), we can apply the fu- time-division multiplexing, the mutual exclusion
sion theorem (theorem 2) to '" and w to obtain problem is solved by letting the i-th process be
a computation w'. where xw5 w', [B] w and in its critical section during the i-th slot in the
vv'[A] y'. In computation (x, w'), B has sent an time cycle. In this case. a computation is a
underlying message and A has sent an overhead tuple consisting of the "current" time and a
message before receiving the underlying mes- sequence of timed-events where each timed-
sage. To complete the proof, we note that event is a pair (time, event). The concept of
there is an extension : of w' in which A receives isomorphism remains valid, though the knowl-
the underlying message sent to it by B. Com- edge transfer theorems no longer hold. because
putation : satisfies I(k + 1). E knowledge can be gained and lost merely by

the passage of time.
It is tempting to define belief in terms of

6.sisomorphism as follows: process p believes b at
6 Discussion x means b holds for most (in measure-theoretic

terms) computations isomorphic to x with re-
We have shown that isomorphism between spect to p. Unfortunately. there do not appear
system computations with respect to a process to be clean results on the gainloss of belief or
is a useful concept in reasoning about distribu- belief transfer.
ted systems. Isomorphism forms the basis for In this paper. when we say a process knows
defining and deriving properties about knowl- b. we allow b to be an arbitrary predicate: h
edge. "Scenarios" have been used [7] to show may be temporal. for instance of the form:
impossibility of solving certain problems: in our eventually b'. For example. in a commit pro-
context, a scenario is a computation, and iso- tocol a process committing itself to a value r
morphism is the formal treatment of equiva- knows that all correct processes will eventuall
lence between scenarios. Theorems on knowl- commit to r. Results about knowledge transfer-
edge transfer provide lower bounds on numbers gain or loss-still hold.
of messages required to solve certain problems.
We have used isomorphism as the basis of fu--
sion theorem and related isomorphism to se- Acknowledgemnr. We are indebted to Shmuel Katz. Joe

Halpern. E.W. Dijkstra and Bengt Jonsson for their com-
mantics of send. receive and internal events. ments. Particular thanks go to Ernie Cohen for a careful

In this paper, we have not defined processes reading of the manuscript and insightful comments.

-.o'.3

52
K.M. Chandy and J. Misra: How processes learn

References4. Hintikka J (1962) Knowledge and belief. Cornell Uni-.,

R e f e r e w "v e r s i t y P r e s s
5. Lamport L (1978) Time, Clocks and the orderings of !

t. Chandy KM, Misra J (1984) Drinking philosophers events in a distributed system. Communications of the

problem. TOPLAS, October 1984 ACM 21: 558-564

2. Fischer MJ, Lymh N, Paterson M (1985) Impossibility 6. Lehmann D (1984) Knowledge, common knowledge,

of distributed consensus with one faulty process. J and related puzzles. ACM SIGACT-SIGOPS Sym-

ACM, April 1985 posium of Principles of Distributed Computing, Van-

3. Halpern JY, Moses Y (1984) Knowledge and common couver, Canada, August 1984

knowledge in a distributed environment. ACM SIGAC- 7. Lynch N& Fischer M (1982) A lower bound for th-'e

T-SIGOPS Symposium on Principles of Distributed time to assure interactive consistency. Information Proc

Computing, Vancouver, Canada, August 1984 Letters 14, 4, June 1982

i
Y

PL

-6. -

Correction to the Paper:

A Really Abstract Concurrent Model and

its Temporal Logic

by: Barringer, Kuiper and Pnueli

Not all the positive operators of the Real Temporal logic are continuous. All
of them are monotonic. We distinguish two types of continuity. An operator 9(X)
is defined to be V-continuous if it satisfies

P"(V Pi) = V V P)

It is defined to be A-continuous if it satisfies

l { A Pi) = A P{(,}

The following operators are V-continuous:

I V, ̂, 0,0 ",X.{PO X),\X.{p§X}

The following operators are A-continuous:

V,A, 8, 8,AX.(Xq),.X.(Xq)

A general equation: X =_ (X) where 9 is a monotonic operator has both
a minimal and a maximal fixpoint solutions, denoted by j&X.p and vX.V respec-
tively. These solutions can be obtained by limits of approximations which for a
general monotonic operator must be carried to an ordinal order. They can be
defined by:

For a non-limit ordinal (or finite index)

For a limit ordinal 6 -

P{x} V P,{x}

! a1-

For every monotonic i there exists an ordinal a such that

jAx.p = p(F)

If p is also V-continuous then:

pX. = P(F) = V ('(F)

Similarly, for approximating the maximal fixpoint we define:

°(x)A = X

-*"(X)=v(p(X)) For a non-limit ordinal ax+x1

P~X) = A (P *(X) For a limit ordinal

For every monotonic W, there exists an ordinal a such that
:. ,x.P = 'P,(T)

If p is also A-continuous then:

x.j,= PA(T) = A ,'(T)

'<I

Ibq,
"0-

:K

5' ...
_._4.'

A Really Abstract Concurrent Model
and its Temporal Logic

Howard Barringer(i)
Ruurd Kuiper(')
Amir Pauefi(2)

Extended Abstract
July 1965

(1) University of Manchester, Manchester, England
(2) Weignmann Institute of Science, Rehovot, Israel

Abstract. In this paper we advanee the rdical notion An important step in the construction and justifies.
that a computational model based on the red# provides tion of temporal proof systems ib the definition of fem-
a more abstract description of concurrent and reactive pondtl ocmu ics, which constructs for a given program P
systems, than the conventional Wdpagr based behavioral a characteristic formula #p, sometimes denoted by [P],
model of execution nqunns. The real model is stud- such that op is true precisely over all the admissible ex-
ied in the setting of temporal logic, and we illustrate its cutions of P. Such definitions have been given for global
advantages by providing a fully .6red temporal sema- systems in [Pnl, WMPA, and in a more syntax directed
ties for a simple concurrent language, and an example style, suitable to compositional proof systems in IDKPIJ,
of verifcation of a concurrent program within the real [BKP2I.
temporal logic defined here. It is shown that, by impos-
ing the crucial condition of jine visMig we achieve a When comparing the temporal sematic of conctr-
balanced formalism that is insensitive to Jflail stuttering, rent programs with other semantic definitions we find that
but can recognize inufi o astuttering, a distinction which is they are deficient in one respect. Namely, they do not
essential for obtaining a fully abstract semantics of non- achieve 11l bitracfm Full abstractness ([hi) is a
terminating processes. Among other advantages, going most important criterion which requires that the seman-
into real-based semantics obviates the need for the con- tics level of detail should match the desired level of sb-
troversial representation of concurrency by interleaving, stractness. In particular it requires that ay two programs
and most of the msociated fairns constraints. that we wish to consider equivalent, should be assignedidentical semantics. For sequential programs we can easily

say that it was the strive towards full abstractness that
Lntroduction led from the overly detailed operational semantics into

the much more satisfactory denotational domain-based

Temporal logic is, by now, a widely accepted formal semantics.
tool for the specification and verifcasion of concurrent Consider the following two program segments that
and reactive systems (see 1 Il, (Lail, [OL, [HOI, [SMSl, represent modules in a concurrent program:
ICE], ICMI and many others). The underlying time struc-
ture upon which those systems are based is dicrete, and, A Z; x:= 2 n
in the linear temporal logic case, is isomorphic to the non- P1 :: z:-l; :=z• z:=2 ,ad
negative integers and models the exvetion sequences that PA : z : z, z ; z := 2
the specified progrm generate. They differ by the number of dummy a := x assign-

The research was supported in part by SERC gnat ments separating the two externally observable instruc-
GR/C/05760. tions z := I and z := 2. At the qualitative level that

Part of the research of the third author was supported by we want to analyze such concurrent program, these two
ONR grant N00014-S&K-0067 while visiting the Univer- program segments should be considered equivalent.
sity of Texas at Austin. Let us examine whether their temporal semantics

are indeed identical. We consider first the logic LI =
Permission to copy without fee all or part of this material is ranted L(O, U) presented in [MPI] and other related works. This
provided that the copies are ao made or disributed for direct logic uses the basic operators 0 (next time) and U (until),
commercial advantage, the ACM copyright notice and the title of the over an integer-like execution sequence.
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy Without giving the precise tem ral senr.ties of P
otherwise, or to republish, requires a fee and/or specific permission, and P2 we can still explain how-tey differ. The tem.

poral semantics of P2 (in the LO logic) requires that in

1. 0 i986 ACM..-19791-175.X./68.173 100.75 any computation sequence of Ps, the x = I and x = 2 arn

,-. 173

-lq~ ~ ' '. 3j~~T&

sprad by d leau 3 computation step (or two interne- Le., z is continuously preserved, which is what we inta-
diate states). In P, the lower bound is only two computa- itively expect.
toe steps. Consequently the LO semantics distinguishes
between P and Ps, and hence is not fully abstract. Thus we fnd that L9 is unsatisfactory because it is

sensitive to bite stuttering, while L+ is unsatisfactory
Lamport perceived this lack of abstractness in the LO because it is insensitive to infinite stuttering.

logic and attributed the problem to the next-time opera-

tor. Consequently, t&tempotal logic that he works with These difficulties are not specific to temporal seman-

([Lai], [OLl) is L+ = L(lL), which uses only the until tics. To the best of our knowledge, no adequate composi-
operator (or an appropriate equivalent). He also formu- tional semantics of concurrent programs which satisfies all
lated the requirement that, in order to be abstract, the of the four following requirements, has yet been proposed.
logic must be insensitive to utsUeri, which he defined 1. Allows nondeterminism in the processes.
as finite consecutive duplication of some staes. Indeed
any execution sequence of Ps may be obtained from some 2. Treats fair parallelism.

execution of P1 by duplication of some states, and the 3. Is fully abstract, in particular is insensitive to fi-
semantics that would be assigned to P and P2 in the L+ nite stuttering.
logic are identical: 4. Properly treats divergent processes, in particular

rPfl = P0 0 1 ~[(z = 1)U +(z = 2)1 infinitely stuttering processes.
Most of the works that did propose semantics of con-

where we use the defined operator pU+q = (p A pUq). current programs are usually deficient in points 2 or 4
Uor both. Point 4 is of course highly subjective, and we
Unfortunately, while this next-less logic provides have our own interpretation of what the "proper" treat-

an abstract semantics for finite processes, Le., having ment of nonterminating processes should be. By this
bounded executions, it raises new problems when we go to interpretation nontermination should not be considered
infinite processes. We may interpret the view represented catastrophic, and a silently divergent (infinitely stutter-
by Lamport's approach by saying that there is no 4bo/use ing) process should have no effect on any process running
time scale against which executions are measured. Time in parallel, except when termination of the full system is
advances only when there is a (state) change. Clearly, considered, which we ignore in this treatment. Thus if we
such a view would naturally ignore any finlte periods of defe the silently divergent
no change. However, by the same token, it would also process:
ignore (or collapse) inmfna periods of no change, which 1= [p where P , [skip;P]]
is unacceptable.

Consider the following recursive procedure we would like to have

P 4= [z := 2; P1 (1I1 Q) 7 Q

where it is assumed that the process P own the vari- for any process Q.
able a, in the sense that P is the only process which may Usually, in works such as [H , [dBMO], [Brd, the
modify z. silently divergent process I is treated either as catas-

The common association of semantics to such a pro- trophic (the Smyth view) or as eks (completely unspec-
cedure is to form a fixpoint equation for a temporal predi- flied process) which leads to equivalences of the form
cate, where the right hand side of the equation is obtained
from the semantics of the procedure's body. We therefore (1I1 Q) Q) .

look for the m ndul solution to the equation:
In our previous work (IMP2I, [BKPIJ, [BKP2J) using

X M 3u.[(a = W)U+((z = u) A X)I LO we usually achieved requirements 1, 2, and 4 but had
to give up on 3. In this paper we suggest that linear tem-

It is not difflcult to see that the maximal solution is poral logic with the time structure of the (non negative)
X = T, i.e., all possible behaviors, in particular those that red sumilers provides a more abstract logic than that of
arbitrarily modify z. This can be explained by the fact the non negative integers, and succeeds in meeting all the
that the procedure P produces infinite stuttering which four criteria above.
the L+ semantics consumes in zero time, and leaves the
rest of the execution unrestricted. Temporal Logic of the Reals (TLR)

If in comparison we consider the semantics assigned
to this process by the L logic, we replace U+ byU U, Let V = L U G be a set of variables which is
defined as rUlq a rA O(rUq). Then the solution is partitioned into L = { .. } the lore/variables, ad

X = 3u. C3(z =u) G = (u, } the globe variables. For simplicity we as-
sume that some of the variables range over a data domain,

174

Ran

and the others, which we call PrePeNhIeA rag over the that the presen (POWn 9) in aom conidered sma part of
boeleon domain {F,Tr). the futur.

A medal over V is an assignment a that assigns to Two additional logical operatohs that are needed awe
auk variable v e V and eachi non-negativet eal numaber poatifeUion and jlxpoiaL
1 *40% a vale a(w, 1) rom the appoiate domain. The Th seatc of the emdtetial quantifier im given
assignment. 0is requite to satls*by
a) Ualformaity of global interpretation -

For eah #~lo variable u E G, ea(*. 9) is indepen- (a,) z 3v.fp Nf there exists a model a' differing
dent of L from a by at mat the assignment ie

b) Finite vaiblt - to 9, such that (*', 9) s v
for ah local variable V G L there a~t deume- Note that we allow quantificatco ae both global
able sequence: and local variables, in contrast to 1 1 where quantil

0oa<,1ca<... wkItha,-*oG cation inallowed onlyoverglobal variables. When quan-
tilng over a local variable V, the requirement that a' be

such that the value of a(ygI) is unifom within each a model according to the delnaition giveni above implies
open interval(Ij, 14+1), Le., for every 9, 9,f t C 9 < that.v satisfies the Inite variability condition.

I' <tj+ the &(. t M *&Ie).Universal quantification may be introduced as a d.
Condition b) guamantees that there could be no infi rived operation:

site variability wdithi a Snite interval, ad that the inter
rtaion of each variable can be decomtposed into count- Vv.jp = 3.(jp

ably mnyw ope. intervals of conatant value. Note that we
do not restrict the values at the break-points ti, which In order to define the fixpoint operator it helps to
could be different from the values .1 their left or right slightly shift our view of the semantica of temporal for-
neighbor intervals. make and dellne for each formuala po and a non-negative

The teemporal logic we consider is based on the oper- real number 9 2: 0, their eatent (validity-et) given by.
atore d (until) and .4 (since) (ILPZI). pt){Iaaf}

We define the value of ters and stat formualse atIa nonnegative real instant I of a model.a by evaluating This definition associates with each formula, p andthem pointwlse, iLe., using o(v, 9) whenever the value of time inatant 8 2 0, a set of all the possible mkodels that
wru nseeded. Fee a state forma po, we denote by p(a, 1)
the value obtained by such pointwise evaluation at point satisf me at 8. This leada to a view by whic euch formil
1. Them we deflaesatlsfiabmlty asbflowL jp defines a function E, frMM R+ (the noM-negative reals)

8) it to X, the set of all models (over V). Let PD=(R+ -.* X
(aaJ ~ (0, 8) MT where 0isasdate denote the set of dt functios from R+ to X. It is not

foral diffiult to see that it is a complete lattice, actually a
9)if (a, 9) 0 0 complete booleaa algebra. The ordering onaDisclosely

(a) l(0 1 V 0) iff (a, 8) 1- #1of(a,') 1- 0 connected to implication between formula. Thu spC-
(a8)-L Owf 41 tinV, each that (when interpreted as elements ofDP) ifp j --* 0 ivalid.

X) In ad~ Consequently the mainimoal elemet of P s F =At.# and

(a,") 1- h -- jeeeto sT=AM
(a, 1)j I f3,0 < SO <c a such that The logical operators may now be viewed a functions

f) -0 andfrom P to P. Thu for ever two elements *I,ae ED, we
ur ever7 e'x < e. t, may express the operators of disunction and sail brr

Note that difrently from the integer-based TL, the eIVG$Cs=eiuAI.,1,(aj#) or
basic nai operator PUO is strict and guarantees a nom a e ,Q))
emptyptointervaL We may also defnesomderivedoper- eilces= A.(a I 39t < t, a e t(9") ad
ator. v',t <e< , a e *(')J)

PA~rini~pVp .o.Mf-me We can show that all the operators defined above

*puMT-# RP ap -T P excluding -% are continuous, while - is anti-continuous

-P A over P. Consequently, we consider equations of the form.t

The derived temporal operators *, EB have similar X re p(X)__w
Meaning to that of their integer-based counterparta, ax- where X in a local proposition variable, and Ip is a tempo-
cas" that in ree tempora logic they aft strict, mansing ral formula in which all instances of X are positive, Ls.,

175

esWassd by an own number of 30 tons. In suh ower IF, T). In this cuse gI.Ial quantification can, be elim
use thsequatoni kn w to hav bohamnmadaated. This is because for a global propoitio, a:
sematel solution. We denote thorn respectively by saX-PUand vX.i.. The usual property of extremal Ixpoints bo. IU.F(u) =- FIT) v p(F).

ing obtained by limits of te approximations, caa be
expressed in our em*.h Consider Anst the language without (local) quantal-

cation or lixpoint operators. We propose the following

00 ~awimatination:
FM All substitution instances of propositional tantolo-

And V-FaF

where for V FIX) we demao p9(X) -X and FL P PkOI1IU
i+1XM F(FiMY(T) F 4# =Al~~- dUIA 0 #

As asimple exampleconsider the equation FS. 1J*) A -(ei*h - (F A -)d#

Xm*(FAF& F 4.p*A9,-(JPAO)d(*'IP) V (FA9)li(#AO)
V IFpA)U (FA P)

Its maximal Axpoint ca beotie by aprxie Six additional aidoms P1-PG are obtained as the mir-
tians. Denoting V(X) as * (p AX), we can show that fo ia of P14F6' that is, t7 interchanging in each
Vi(T) holds at t fthere iditnct tim instants axiom (Bwith B8and dwith s.
t < 1< ... < 9,subh that pholds at each of tie It,-,i. Axioms F1 and P1 state that theU d W operators

points ahead of $ at which js i true. Ia real temporal logc Axioms F2 and P2 specif the relation of reflection,
this leads ga holding between past and future. Axioms F3, F4 and their

YX.*(p X) I B *p V (pT))paut counterparts characteuize the time structure as being
vX.(jiX~m~*p*(F T))dean,iLe., betweenevery two instants there exists an ad.

On the other head, the minimal IpoW t this equa- ditional instant distinct from both. To see this, consider
tion inP. This in due to tie fact that P satislles the a simpler version * F .- * OF which Also character-
equation and is also the minimal element of P. We thu ie density. It certainly does not hold in integer-based
have: TL, when we interpret * v as 0* P. Axioms FS andI PS state that the time structure is linear. Essentially it

IIX.* (pA X) aP says that if bath 0' and p are bound to happen, then they
will either happen simultaneously or one will precede the

Am important observation is that all the operators Other.Iintroduced respect the Amite vawiabilty , resrct. This i EBF-*
means that the Sunite variability restriction holds not only F.~ -

for the propositions and variables, but also, for ay tem- PT. BF v 9 6PF
poa formula defned over them. Axiom FT state that the future is unbounded while

PT asymmetrically states that the pust does have a defi-
Axomatic Charauatiou of the Rml Tempo- site starting point.
rlLogic the proposed system includes the following inference

rules:
Whenever alogic is introduced and recommendeda 1.1i. Modus ?oneas: I-FI- (-. I-

a tool for formal remasoing about programs, an essential
pant of this recommendation should ho a deductive eye R2. Generalisation: I- V p F, I Spo.
tem that supports sound reasoning within the logic itelf. the system, consisting of axioms FO-47, P1-PT and
Since the fagi logic is clearly sot finitely axiamatimable, we mks RA, 2 is taken amost verbatim from PBul, where
will mnt-oduce the deductive systemi we propose in steis, it is stated that it form a sound and complete axiomatic
indicating the step at which we lose completeness and do. system for the considered fragment of propositional TL
cidability. over the refienal haglfline Q+ M(r GQ Ir 2! 0.

The Propositional Fragment In order to characterize the real half line a+ we usu-
ally add a comlene axiom. The aiom state that

The propositional fragment is obtained by requiring any (Dedekind) cut defined by a change of a proposition,
that all the variables in V are propositios, La.., rage say from T to F, Identifies an instant boloaeiae to the

176

IW
1-7 7.-

structure which marks the trasiton point in oar eaeTh aioms controlling the quantifiers ane similar to
the requirement of finite variability already ensures that those presented in W31a:
any chamge in value of a variable y must be associated 4
with some node Id that marks the transition point. Corn- QF1. 3.1401I a fpl(3p.*)
sequently completeness is superceded by the Emnite vai- where p is mot fre in P.Iability requirement represented by the axioms: The additoal axiom QPI, is the past counterpart
F& pdT v (-'p)lT of QFi.
P& (0~ T) -P T V (-'p)ST Q2. Vpjp(p) -. (O)

These axiom state that for every formula p and am- whe 0s n formula fre for p im fp.
stamt I > 0, thern is always an open interval to the right
atft((I f< e < rfor some , i<) inwhich the Andwe sohavthefolwigrule

value of Pis uniform, and if 8>0, also anopen iterval R&. Ip. n-.Vp.#
to the left ot 8inwhich Vis uiform. whiere p isot ieein p.

A coseqeme of he actthatfinte ariailiy ~For the proper definition of the semantics of propsms
plies completeness is that, relative to the language TLR. esol eal oetbis h xsec fpooi
the class of models based on the reals is equivalent to weosah eale o esaliteeitnc fpooi
the class of models based on the rationale. This maos tosta aea niievrain
that aTLR formula is satisfiable by areal model iffit For aformula, we dene thefollowing abbrevia
is satifible by a rational model. Consequently we may tious:
interpret the R of TLR as standing for either the Reals = (v(-p)j'A 1i. V p1L2 1
or the Ratioaals.

Consder extthe ntrducton f th Axointop. Rise(p)is true at 9 a 0 i is a transition point at which

erators to our system. Simce the minimal and maximal Pchne oFtoT

Expoint operators are intewdelmable, we choose as basic
the maximal fixpomnt operator. It is controlled by the Fallfip) =Rise(-p).

foilkwimg axiom: Chip) =Rise(jp)v Fai(p)

X1. VX-jo(X) a JPfrX.jP(X)) Thus Ch(pO) is true at 9 a 0 i chamges its value at 9.
iLe., the maximal solution to the equatiom X a p(X)Cocq)-(gA q-.(u)Tj
satisfies the equatiom. Cokf E fAC(-~ ~

A rule associated with the ICpoint operator is: A proposition is called a dock if it is true at infinitely
R3. 0 -* jp(O)=-9 X) mamy points, and whemever it is true it is immnediately

T isrle tatestha IX.p(X) h aia ou false at a right neighboring interva. This implies that

tiototheequ tha vX (X) isd thenc maxima ou- qis true at countalily many isolated points (never at am

The miiaxpoint cam be defined by: We add the following aim:
C. 3q-.(Clock(f)A C3Ch(O) -

PX-1P(X) = VX-'P(-X) (-Ch())d (if A .. Ch(p))))

The completenes of the system up to this point is This axiom states that for any formula V there exists
discussed~ inIL a clock q that becomes true (ticks) at lost omce between

The ost ompex oeraors n te laguae methe every two consecutive chamges in P.
qathfermst Acouaplye x operators inth cang are the The questions of decidability and completeness of ti

Aebyma ofquantifiers. Actuallyn the fpotoeroscam brede- axiomatic system for the propositional fragment of ThK
tindb: en fqatfes nrdcn h brva will be discussed in ILPj, hoping to establish positive an-

swes for both.
3o = ip A p A EB P A trivial extension of the propositional fragment,

we cn epres v~jPX) y th folowng ormla:which is still decidable, is obtained by allowing a singie

we k camf Axr s VX.ps p) folo in -or q))] fixe data dom ain D of finite cardimality.

3,.IA Oaq)AP. OOa~p- ~The General Logic

wheree~r) n gien byr a pr).s soon as we alow data domains of unbounded car- .''
This formula explicitly states that q holds now, q dinality, the logic becomes highly undecidable and not

satisfies the equation e at all points, and any other p sal fInitely axiomatizable. In that case-we have also to corn-
isfyiug e at all points is necessarily smaller or equal to sider quantification over global variables. This quantill-

I. cation obeys axioms QFl, QP1, Q2 and rule R4 as well.

177

A brioula v is celled SIoW N it depends a* slc the variable. oc ally declared ia w, which v mo madI-
giba varabhe and propoiton. Pot & glbamulae V Wf %.

we hva te Ol~hP4UOO ~Given a complete, procm we dela for subk comn-
G. PE~ N e tituest sbprocess A, the et rnd(p) which is the adt

of variabe that # actusaly modiles or declares owning.
A Pmogamm4"LwngWW and Its Operational This isdefined by the Moloviag equatios

we introduce a imple propmmiag Ianguaoe pro contaihete asa a wBdelrd
cesm. which comnssicate, by shared variables. since we mod (skgir) uumodfr)

vatto emuphamis. their continuous heharlor rather then mod (#:- o;) mimod(s) U (v)

them, tolteminute mod Qw wi0 eg-) - U mod(in)
Asseuting that the syntax hor termn and coaditims mo (own I; v) =mod(r) u(9

in understood, the follwing recursive dellnitiom describe. mo (i 11vs) -mond(s1) U mod(w,)
the syntax of processes: mod (new T,) -mod(w) - m elo o hi

mod (P vheeP. Bw) =rmod(B)
His: ~~~~ ~ Tr rawtom ar a roescua rso s frte atin

U I i a prcessthen o is 6* 1We mW saw defte for saoh subproces p he st

§a fiarc te~i~ wasp), which b is do aralsta tecneti
Assignment: whch p occurs has declared as owned by p. The coops-

U isa "d wmrisW # a term and ra procem, tado. of thoe se proeeds ina topdowa fashon.
then 1:- 0risa proem that amtassgssato ff 0M shi, Ior P M I#:= 4 j, then

Iadthen proceed to periorm . ownsls) mownsp)

U ..rh e processes and l,..., ck an cca- owus(si)Mov'a(p) S ahi kh ~ ~~dido.., the 0 Ocd -v is a roem that 110. 1 ~S Iyi=I ~owns(p) 1 2 s ~ ad dls
doerninistically choose.a direction i such that Oasfri) forsa i - ,
c, is true and thea proceed& to perform r4, tor UP M aem 1; , thea
someaah ,..k (Ywns(i) :ownsWp U WJ.

i~~It P I'Where P.- B1, then
Uf ri, ft wre two Processes and __, i rodwOWssP) -ovnsB) -OWWsW U
joint met" o1 data variable., then U oW*s(UP)
low% ' ,'' Wi. .21 is a proess that per- op
forms,1 sad vs in paraleL Th ow w& This delnitioa is agan recusive am we look im the
ration partition the available variables iato two mimasouon
mets aseociating with each process the set of vurl-
able. It is allowed to modif. A c let procem ns, p; is well formed it

Data Yariale. Declaration: a) No declaratic of the form amw I is under the

If Iis aProcess thea sob isew I; r, declaring scope of arnother declaratoa for some variable isn9

pedo= r byrenain.

variabeand Sa poem(body) thn p whegp e.B sdolrao rP

~ag. We &sem. that each mubprocess within thecon
A coemplete procss will have the genera form plete process own M, p is uniquely ideaflabk. We do.

own IR 1 J, where the preceding own declaration identilles fine a labelled translon relation representing the possible

178J

- -. r. "I: i1...... . .. -: .. . ' - ..1". .. .I

trnsformations that can be elected in one computation e) The sequence S is weakly fair. This means that we
step. Assume a set of states S, each of which is a mapping exclude infinite sequences in which for some A and
fom the currently declared variables to their values. A i > 0, A is continuously enabled beyond <r,,vu>
semjlgurelwa is a pair <ra> consisting of a process v but never taken, i.e., A is enabled in each <ry, @,>,
and a state a e S. j > i, but for all j > i, Ai # A.

For r = [sk;p ; M or r = [own 9 ;pl, We define Su, the set of I-#lates, as the set of all
<r,> -- <p,u> states whose domain is . Let r = [own 1; pi be a com-

plete process, and so E Sr. A beAsor of r on *o is a

% W =[,u; p], >finite or infinite sequence of I-states:< ,> - <P, (f; r. -(e)) >

where (r;zr.u(e)) denotes the state obtained from a' by 0: 80,

assigning the value of e evaluated at a to I. such that there exists an execution sequence:

Fort= IOc, -PI, Ao A
ar $:<jrO,uo> - <ujr,ul> .- ,...
T• -- : <9, 0 -, NJra

o e 70 - <.. , 17> s hwith jo = r and ai = , Ijr, i.e., r, restricted to the
fo eachi=, k.suchthatu(c,)=T. domain J, for each i = 0,,.

For t = lnew 9; p1, This definition of behavior is still too detailed and
<r, u> -- <p'", ('; r: .L)> may contain redundant details such as stuttering. Conse-

where p' and y' are obtained from p and y by systemat- quently, we define the notion of a redsced bekavior which
ically renaming all the variables in p that are in conflict eliminates stuttering altogether. A reduced behavior cor-
with the currently declared variables, i.e. the current do- responding to a complete process r and an initial state so,
main of v. Again (a; i: .L) denotes the state obtained is a finite or infinite sequence of z-states which is obtain-
from a by augmenting the domain of w by Y and assign- able from a behavior of r on so by deleting all consecutive
ing to them the undefined value .. duplicates. Obviously such a deletion may transform infi-

nite behaviors into finite reduced behaviors. Let B(r, so)For r = 1p 11 psi, we have be the set of all reduced behaviors of r on so. Then the

<7,0f> - <1 ii Ps, oA> operational semantics we assign to a complete process r is
1% a mapping from initial states to reduced behaviors given

for each transition <p1,,> A <p ,oe>, and by:
A lL0 = kao.B(t, so)

e, This definition leads directly to a definition of an
induced observational congruence given by:

For r = [P where P 4= B],
<ru> - <B,V> The processes r and p are opevieaosll congruent,

For r = cal P, appearing within the body B of a

declaration P c= B, (1) C(r) is a well formed complete process if C(p) is.

<ae> - <B,W>. (2) In the case that both C(r) and C(p) are well formed

4'If <7,0,> X<r~ue> for some r, e tI~henwe say thiet roess co1gu01 = e bse00 thacomplete processes, O'E-C(r)]I = O("[C(p)]].
If <r, -. ,o> fo soe r*o , thenwe a .As an excample of this congruence we observe that

that the label (process) A is cs,,ed in the configuration

An execution sequence corresponding to the initial

configuration <wo,o i> is a labelled transition sequence: We may now reformulate the challenge we posed
in the introduction as: Find a compositional semantics

Ao <7j'j> A, which is fully abstract relative to the operational con-
gruence defined above. We claim that the real temporal
semantics that we introduce in the next section answers

such that: this challenge.

a) Every transition appearing in S is justified by the
definition above. A Real Temporal Semantics

b) The sequence S is m ml, i.e., it is either infinite
I or terminates in a configuration <ar,ifk> on which Let own 1; so be a weli formed omplete process. Let

no subprocess of rk is enabled. us associate a temporal proposition variable X, with each

179

I

p mevauiable Pj, i ... k defled in ro. Also assume in 3, Le., variables in owns(r) n , will eve be modified

that we have computed for each subprocess p appearing i ain. This is because any reference made by p to one
io, its owuen se met e p) determied by its context. of these variables in interpreted a addressing the newly

In the setioa dealing with temporal logic, we have declard vaabl of tha name.
defned the formula Ch(p) that marks the transition point e i' where P 4z B.] = 3q..XjsU+(Ch(q) A siOBIJ)

at which a IIsmla p changes ita truth value. We extend In principle, the natural definition we would expect
this foJmals to mmuar('hauge in a data variable I by: for process r rsioa is:

Ch(j) = 3u.ise(V = u) vX.sU+[B1I.
However, as we explained in the introduction, if B con-

ThWe a mmrk the potof cha from u tou u. tain an sguded path, Le., a path with no chane in
We alma define the idliq/s Ieda U: the values of variables, from P to call P, the maximal

fixpoint of the naive equation will include undesirable be-

a I (y) = Ch(U). haviors. To ensure that all paths to X. in ([B] will contain
a chane, we impose a& external clock q which is required

The temporal semantics of a process in, denoted by TV] to cume at least once on each recursion. By existentially
is a temporal formula that characterizes its behavior in quatifying over it, we strct away ay partiular fes-
aa abstract way. In the following definitions we use the tm tha y be assrat a with a specific clock.
abbreviation a = ,(own.(r)) to denote that all the vati- t assd
ables owned by r are not presently chaged. We provde Because of space limitations we present the main the-
one clause of the definition for each type of subprocess: orem of this paper without a proo A detailed proof will

* Ereel= JsA be contained in a technical report premsenting a fuller ver-

This implies that the main efect of the process r slon of the paper.

to preserve forever the values of variables it owns. Term

* 4 'r. where X, is the propomition variable we have associated The realtemporalsemantics presented in this section
* with the process variable P. is fully abstract with respect to the relation of operational
" .A coagruence.

*jfr:=r ,.l= TLR As a Working Tool
,A 3 ^d(A (u = e) A %U((k= .) A -(owns() -)

SuffM The complex formulse appearing an the definition of

This formula identifies a first point in which e is eval- the temporal semantics of processes may have created
uated, and then a second point at which y is assigned the the impression that TLK is a complicated formalism to
obtained value while all the other variables owned by x work with. This impression is unjustified, and the ap-
a still pteseved. parent complexity should be attributed to the effors of

(3 constructing a compositional semantics of concurrent pro-
S-ceases. In fact, for actual reasoning about programs, TLR

a is quite comparable to integer-based temporal logic, and
i A (I Me A A A E - ,cIv€ e AV ajl j) the added feature of fail abstractness makes it an attrac-

tive alternative.
This definition considers the possibility of deadlock Consider for example the following process:

ast r if each coaditioa is infnitely many times false, the
other possibility is the identifcation of a true cy followed .own z; P where P 4 I := + 1; P1
by the eecution of pl.

S Qs = &J Ar W . An obvious property of this process is expressed by
ur a Iiua.the formula (x 2t) -~ ER(z ?). Let podenote z>O .

We consider the simplicity of this clause an important In the integer-based TL we establish the conditional in-
e eature that may well justify the complexity of the other variance of o, Le., that once it holds it is preserved for-

clae. ever, by showing that all the atomic actions of r preserve

o [A S$(I))A uf•sd p. Here we do something similar. First, we oberve that
1eowns(r)nr after some simplifications TV ff= where

The main effect of the declaration of new variables is 0: Y.X.3%((z = W)U+(x = u + l)U+I(x = a + 1) A X11
expressed by the existential quantification over the newly
introduced variables. A secondary elect is that all the We have eliminated in this expression the external clock
variables that r owns but have been covered or redeclared q, since the process itself guarantees a change on each

; "- 180

*1
.

--7

iteration. This elimination can be formally jusiled. Ob- An Example of Specification and Verification
viouly e satisfes its equation:viuly e = it e t 1)U+I(= . +1)For a more comprehensive example we consider Pe-

. -- 3l(z - v)U+(z = a + 1)U+I(z = N, + 1) A il] ternon algorithm for mutual exclusion (EPeI).
From which it is not difcult to establish:

In a slightly extended version of our programming
2. 0 A p - (pJ+[Ch(z) ^A U+(e A fp)]) language, the algorithm can be presented as:

This can be interpreted as showing that E A o sat-
ises the equation P: own u1,us,t, in, ins;

Y - pU+[Ch(z) A pU+Y (, *, l,is, ins) := (F, F.F, F, F); [p 11 psi

where
Consequently, using rule R3 and the existential ver- p own 1 ,in,, 1; I where P 1 1
sion of R4 we obtain

a. A jp - 3z.&*Y~ioU+[Ch(z) A IPU+Yll ps e m nI;(P2 where Ps '4Bi

An important theorem of TLR is: Bj: I(T-. e Pl)

4. (3 .LYIOU+tECh(z) A jpU+YlI E (jpA) (1 :=T; l:=F;

We th : obtain [QT wh;r Q: }l

Or equivalently Bs: [(T call P2)

6. (EiJ '8p (T -~g:T; I:= T
Using the notation of [BKP1J this is representable [Q, where Qs 4- Csl)
as Ca: 1(y3A- t - Cel Q1)7. I'd -(9 p -,l ^3 F) -0
which means that all executions of r satisfy the tem- (- V t -- in := T ; in, := F;

poral property io -W E P. := F; call P)j

Since the only step in this proof that depends on the CS: ((g A -8 M iQs)
specific r and o considered, was the derivation of 2 from 0
1, we can condense all the others into a derived proof ('jfj V -- in, := T ; ins := F;
principle. := F ; coil Ps)1

Let r be a process of the form;
The extension we introduced to our programming

r: own 1; P where P ft B language is that both p, and p are allowed to modify
9, but each in its own way. The notation 1 9 means that

Denote by TBI(X) the temporal semantics of B, where pi and its subprocesses are only allowed to set 9 to F,
dependence on the propositional variable X has been while ps is only allowed to set I to T.
made explicit. Then we have the following rule: As a result the i formla for p, and ft should read

respectively.

e a EBI(e) - e A tp - (jU+[Ch(q) A pt+(e A pf)} s, = -Ch(yl) A -Ch(int) A - Fall (9)

l(ip p) , = -Ch(j&) A -Ch(in,) A - Rise (8)

A slightly more general rule is needed for the canse that B Writing the semantics of the two processes, it is pos-
is not guarded. sible to infer from them the following modular specifica-

Inspecting the passage from I to 2 above, we see that tions:
what is needed is establishing that ip is preserved along
any computation path in B leading to any call P appear- s(c3(in -" 0 1) A cin, A e, -A 0)2
ing within B. We also observe that it is very similar to [psi(E(ins - 0s) A CE(ins A Os -))
the rule PROC handling recursion in [BKPIJ.

It is clear that many more derived rules of this kind where 0 1 and 02 characterize the history of a point in
should be developed before we can use TLR with the same which #I and pg are ready to enter their critical section

eme and convenience now attained in the integer-based (signified by setting in, and ins to T).
TL. However, we do feel confident that such high-level
rules can and will be developed. 01:l A A IQ

01: s, A 1,9(1 A Is)

181

-e.
. .

It is easy to see that when we combine these speil- flinching Time Temporal Logic, 1st Work-
cations we can obtain (by contradiction): shop on Logic of Programs, LV CS 131 (1961)

(pi 11 psI { 3-'(int A ins)} 52-71.

*which establishes mutual exclusion. ICU) Clarke, ELM., Miabra B. - Automatic Vets-
ficatioa of Asynchronous Circuits, 2ad Work-

46- shop on Logics of Programs, LNCS 164 (1983)
Conclusions 101-115.

The real-numbers based model and its associated real fRM Heanesy, MLC.D., Miluer, R. - Algebraic lava
temporal logic, seem to achieve a higher degree of ab- for Nowdetenrainiam and Concurrency, JACM
stractarsa than the one provided by the integers-based A I (196) L37-161.
model. The price does not appear to be excessive since 11101 Hailpern, B., Owicki, S. - Modular Veriflca-
the basic structure of temporal formulae, specifications tioa of computer Communication Protocols,and proofs is not significantly altered. The gain is ob- 1ZX l~a. on Commnhsiicenas, COM-31,
vious since it provides a much cleaner and more natural 1 (18)5.U
semantics. This becomes even more apparent when illus-
tinted on a communication based process language such [HPI Hennesy, M.C.B., Plotkin, G.D. - Full Ab-
as CCS. It can be shown that the real temporal seman- stractios for a Simple Parallel Program-
tics of CCS attains the same standard of abstractness set ming Language, Mathematical Foundations of
up in the algebraic treatment of CCS and its derivatives Computer Science, LNCS, 74, Springer Verlag
(1W21 [HMI, IdNHI). (1979) 108-120.

(f Jones, C.B. - Software Development: A Rig-
Acknowledgements orous Approach, Prentice Hall International

Series in Computer Science
We would like to gratefully acknowledge the sup- [LU Lamport, L. - What Good is Temporal

port given by the Weizmana Institute to the visit of theLoiPrcIFPCnesars(93
firm two authors. Many thanks are due to L. Lamport,
M. Chandi and J. Misra for most illuminating discussions,
to A. Emerson and L. Zuck for friendly help and advice, (LSA2 Lamport, L. - Specifying Concurrent Pro.
to the participants of E.W. DQkstra's Tuesday afternoon gram Modules, ACM TOPLAS 5, 2 (1983)
club for many helpful comments, and last but not least to 190--222.UC. Weintraub for her Most speedy and efficient typing. JLPJ Lichtenstein, 0., Pnueli, A. - A Deductive

System for the Temporal Logic of the Reals,
References Technical Report, Weizmann Institute of Sci-

[BKPIJ Barringer, H., Kuiper, R., Puneli, A. - Noweneinppato.
You May Compose Temporal Logic Specifica. [LPZJ Lichtenstein, 0., Puneli, A., Zuck, L. - The
tions, 16th STOC (1984) 5L-0. Glory of the Past, Logics of Program, LNiCS,19,Srne elg(95 WU9

IBKP21 Barringer, H., Kuiper, R., Pnueli, A. -A 6SpngrVla(18)962.
Compositional Temporal Approach to a CSP- IMII Milner, R. -Fully Abstract Models of
like Language, Proc. of IFIP Conference: The Typed 7-Calculi, Theoretic Computer Science
Role of Abstract Models in Information Proo- (1977).
ceasing, Vienna (1985). (MM Milner, R. - A Calculus of Communicating

[dBMoI de Bakker, J.W., Meyer, J.-J.Ch., Olderog, Systems, LRCS 92 (1960).
E.-R. - Infinite Streams and Finite Obser- [MP1h Manna, Z., Pueli, A. - Verification of Con-
vations in the Semantics of Uniform Concur- current Programs: The Temporal Framework,
rency, 12th ICALP (1965) 109-157. in Correctness Problem in Computer Science,

jBrj Brookes, S.D. - A Semantics and Proof Sys- R(S.oyer 21--7.Mor(es)AamiPes
tem for Communicating Processes, 2nd Work-.16)2523
shop on Logics of Programs, LNCS 164 (1983) WM21 Manna, Z., Punch, A. - How to Cook a Tem-
W885. poral Proof System for Your Pet language,

(Bul Burgess, J.P. - Basic Tense Logic, in D. Gab- 10~th POPL (1983) 141-1,54.
bay and F. Guenthner (eds.) Handbook of [MP31 Manna, Z., Pnueli, A. - Verification of Con-
Philosophical Logic, Vol U1, D. Reidel Publish- current Program: A Temporal Proof Sys.-
ens (1984) 89-133. tem, Foundations of Computer Science IV,

ICE) Clarke, E.M., Emerson, E.A. - Design and Distributed Systems, MA1U9emeaic.A Cenrm
Synthesis of Synchronization Skeletons Using Tracts, 159, Amsterdam (1963) 163255.

182

.~ .,, - WW

dNj de Nkcola, IL, Henesy, MCea. -Toting

Equivalence for Proc..., 10th ICALP, £1103

PqGOJ Nguyn, V, GreD., Owici S. - A ModelN and Temporal Proof System for Networks of

lOLl Owici S., Lamport, L. - Proving Live...s
Propwgti of Concurrent Programs, ACM
TOPLAS 4, 3(96) 4U-09.

11.1 Peterson CL - Myths about the Mutual Em-
clusio. Problem, I./nmnuone Proc. sia Ldj.

[PaIJ P24A h ema eai of Cos.-
current Programs, Comgiid C stev o
can 18 (1961) "84.

IPR21 PRUdiA. - IR aNsition fonalobalto
Modular Temporal Roaming About Pro.
grams, Proc of NATO School on Logic
ad Models for Verification and Specification,
of Concurrent System, L& Colessur.Loup

IM Schwartz, "tL, Meillar-Smith, P.AL - Tom.
poral Logic SPeciflcations of Distributed Sys.
tome, 2nd International Conference o. DiD.
tuibuted Computing Systems, padis (196).

r.

183
NO

I
Systolic Algorithms as Programs

K. Mani Chandy

J. Misra

Department of Computer Sciences
University of Texas
Austin, Texas 78712

20 December 1985

Abstract

We represent a systolic algorithm by a program consisting of one multiple assignment
i -statement that captures its operation and data flow. We use invariants to develop such

programs systematically. We present two examples, matrix multiplication and LU-
decomposition of a matrix.

4

This work was supported in part by a grant from the Office of Naval Research under
grant N00014-85-K-0057.

.0'

_ Table of Contents
1. Introduction1
2. Programs and Systolic Algorithms1

U 2.1. Programs1
2.2. Systolic Algorithms 2
2.3. Representing Systolic Algorithms by Programs 2
2.4. Program Development 4
2.5. Notation 4

3. Band Matrix Multiplication 5

3.3. Determining Array Size and Number of Steps8
4. L-U Decomposition of a Band Matrix g

4.1. Initial Conditions 11
4.2. Preserving the Invariant 11

4.2.1. Preserving the first condition in the invariant 11
4.2.2. Preserving the second condition in the invariant 13
4.2.3. Preserving the third condition in the invariant 13

5. Discussion 14
1'6. References 15

List of' Figures
Figure 2-1: Shift Register 3
Figure 3-1: Relevant portion of a systolic array for multiplications of band 10

*matrices with BA -3, TA=2, BB -1, TB=I

1

k 1. Introduction
Systolic algorithms [1] are synchronous, parallel programs executing on a numberU of nodes (machines) interconnected by a set of lines. Systolic algorithms are often

described by pictures of nodes and lines and descriptions of processing at each node in
the picture and data movement between nodes. A pictorial representation of an algo-
rithm suggests that it can be implemented on a VLSI chip; however, pictures do not
lend themselves readily to proofs. of correctness.

We view systolic algorithms as programs and apply traditional program develop-
ment techniques, based on invariants, in their design. In this paper we carry out the
development of algorithms for matrix multiplication of band matrices and L-U decom-
position of a band matrices. Both algorithms are from Kung and Leiserson [1].

We are far from proposing a VLSI design methodology: We do not consider many
of the limitations in a physical realization; these are concerns for a later stage in the
design. However, our use of traditional program development techniques seems to yield
designs for which data flow rates, initial and boundary conditions- the tedious details-
are derived mechanically.

A great deal of work has been done on systematic methods for developing systolic
algorithms [5,6,7,8]. These methods are largely based on transforming sets of equations

IN into forms suitable for implementation on systolic hardware. The primary contribution
of this paper is to represent systolic algorithms by programs derived from invariants.
Each program consists of one multiple assignment statement. Our goal is to apply
traditional programming techniques in developing systolic algorithms.

2. Programs and Systolic Algorithms

2.1. Programs
Our programs have multiple assignment statements. A multiple assignment

statement of the form,

assigns f(x'1, y'I) and g(x 1, y 1) to x, y respectively where x 1, y' are the values of x, y prior
to the execution of the statement. We allow the right sides of assignments to be con-
ditional expressions. For instance, we represent

0={, if a>O-

Iifa<O

"U

2

by,

X := 0 f a> >0- 1 if a< <0

A program consists of declarations of its variables and their initial values and one
multiple assignment statement. The program execution consists of executing this state-
ment repeatedly forever. Non-terminating execution is convenient for reasoning;
however, the program may be stopped when the left and right sides of the statement
are equal in value, because no further change in variable values is then possible.
Restricting a program to one multiple assignment may seem too restrictive. However,
our experience suggests that such programs are adequate for representing systolic al-
gorithms. A multiple assignment can be thought of as a synchronous computation -

computing all expressions on the right side synchronously - and hence, captures the es-
sence of systolic computations. Elsewhere [2,3,41 , we have shown that a set of multiple
assignment statements executed in a non-deterministic fashion represents different kinds
of parallel and distributed computations; for this paper, we do not require this

~ generality.

2.2. Systolic Algorithms
A systolic algorithm is executed on a collection of nodes, and directed lines con-

necting pairs of nodes. A step of the computation consists of some nodes (1) reading
values from (some or all of) their input lines, (2) computing and (3) writing values to
(some or a of) their output lines. A value written to a line is available at the next step
at the node to which the line is directed. We may represent local data at a node by
placing the data on lines directed from the node to itself.

Systolic algorithms display regular structures: there are only a few kinds of nodes,
and interconnections among nodes are regular. Furthermore, in many cases, systolic
hardware operates in a pipelined fashion.

2.3. Representing Systolic Algorithms by Programs
We represent each line in a systolic circuit by a variable; a variable value at any

point in the computation is the value on the corresponding line. Each node in a systolic
circuit is represented by an assignment (in the multiple assignment statement). A
synchronous step in the systolic algorithm is simulated by executing a multiple assign-
ment statement: it assigns new values to certain variables based on current values of
some variables. A small example is given below.

Example: (Shift Register)

A systolic algorithm for a shift register with N nodes is shown pictorially in figure
2-1. Every node transmits the value from its input line to its output linein every step.
Lines are numbered as shown in the picture.

i 3

Figure 2-1: Shift Register

Let x[ij be the variable associated with the ith line. The multiple assignment
statement which represents the operation of this algorithm is, (informally)

for all i in 0 to N- 1:: {assign in parallel)
zji + 1] :- Xlii.

We will write this as (in a notation to be introduced later):

(i in O..N- 1::

Note that there is no explicit mention in the program about data movement. Data
items move within the array by being assigned to different array elements, but our
treatment does not trace the movement of individual data items.

A multiple assignment statement may represent an algorithm having no systolic
realization. For instance, a line value is read by exactly one node in a systolic algorithm
but a variable may appear in the right hand side of more than one assignment in our
program. Similarly, computation at a node usually depends only on a few input line
values due to physical constralnts, but our programs allow expressions on the right hand
side to have arbitrary numbers of variables. We constrain our programs to mirror these
limitations of systolic hardware.

Limited fan-in, fan-out: Each expression on the right hand side of an assignment
has a bounded number of variables. This bound is the maximum fan-in. Each variable
appears at most once on the left hand side of an assignment and at most once on the
right hand side of an assignment; this is because each line is directed from one node on
the external environment to one node on the external environment.

2 4

Systolic algorithms typically operate on arrays of data items. Systolic algorithms
require that the speed at which data moves through the circuit be independent of the3 index of the data items (usually). Hence, we propose:

Linearity: The step number at which a computation is done is usually a simple
(e.g., linear or piecewise-linear) function of data indices.

We have shown the correspondence between systolic algorithms and a special kind
of program. Henceforth, we deal only with issues of developing such a program from a
specification.

2.4. Program Development
As in other areas of programming, an invariant is a central concept in our ap-

proach to systolic algorithms. In fact, it seems that the program design task is almost
over once a suitable invariant is found. We introduce a variable t, denoting the step
number (t is initially 0 and is increased by 1 in each execution of the statement) and
state an invariant relating various data items and t. We will be guided by the limited
fan-in-fan-out and linearity requirements in postulating an invariant. The _ffect of
statement execution is to preserve the invariant when t is increased by 1.

The invariant is useful in deriving initial conditions and boundary conditions.
Determining these conditions and the rate of data flow are the most tedious details one
has to contend with; invariants seem to simplify the effort.

S 2.5. Notation

We use 11 to break up a multiple assignment statement into its component assign-

ments for convenience in reading. For instance,

S, y : X y, x

is equivalent to

x:= Y I1y:= X

The following notation, where S is a set and each Q(i) is an assignment (or mul-
tiple assignment):

i (i in S :: 11 Q(i)

denotes a statement obtained by enumerating, for every element of S.Q(i) with i
replaced by that element. For example (i in 0..1: 11 X[i] := Y[i]) is equivalent to
1j X[0J : Y0] iIX[1 :ff Y11]. We omit S when it is clear from the context. The state-
ment,

z eif b

is to be interpreted as

S:-e if b - X if -,b.

The scope of if will be shown explicitly, if needed, as in the following.
z~, y :=- (el l C2) if b

is equivalent to,

X, y:---e 1 if b, e2 if b

and also equivalent to,

(Z, y:= e, eC2) if b

3. Band Matrix Multiplication
The problem is to compute

C A.B

where A, B are band matrices and ". " denotes multiplication.

We have,

C(i,k]- A[iaJ X Bj,k]

This expression cannot be used directly for computing C[i,k] since that would vio-
late the limited fan-in-fan-out requirement. Therefore, we define as in [1]:

Cl0,k] = ifj<o

(C' 1= [i,k] + A[iJ1 X B[j,k], ifj 0

Equation (i) suggests that A[ijj and Bj,k] will be multiplied in some step. Using the
linearity criterion, we may postulate that they will be multiplied in a step which is a
linear function of i,j,k. If this linear function is independent of one of -is arguments,
say i, then for any fixed value of jk, A[i4j and B[j,k], will be multiplied in the same

i

step for all i; that is Bj,k] will appear in more than one computation in a step, thus
violating the limited fan-in-fan-out requirement. Hence, we may assume that Afi,j],
Bi,k] are multiplied in a step that is a nontrivial linear function of each of its ar-
guments - we choose the simplest such function: i + j + k.

Since AB are band matrices, we postulate that each diagonal (main, subdiagonal
or superdiagonal) is pipelined. Let one node be assigned for each pair of diagonals - one
from A and one from B - to carry out computations on element pairs from these

S diagonals. Element AfiJ belongs to diagonal (i- J) of A and Bik] to diagonal (. - k)
of B; hence index the node at which they are multiplied by (i - j, j - k).

Equation (1) suggests that A[i,, Bj,k], C ' [i,k] be made available at the same
time at some node and, from this discussion, that node is (i - j, j - k). Therefore, each
node (v,w) has three input lines Xjv,w], Ylv,w] and Z[v,w], along which A,B,C respec-
tively are pumped into it. From this discussion, we have the following invariant.

~ Invariant : t=i+j+k

[Xji- j, j- k] fA[iJl and,
Ili - j, j- k] Bk] and,
Zi - j, j- k] -j -' [i,k].

The variables i,j,k,t in the invariant are universally quantified over all integers; ignore
the equations corresponding to undefined subscript values in the right side.

Our design task is nearly complete! We merely have to show how to establish the
invariant initially, and how to preserve it when t is increased by 1.

3.1. Initial Conditions
Initially, let t be 0. Then for any ij with k-- -(i + j), required to have,

X[i - j, i + 21 = Ali1.

Similarly,

1 Y- 2j- k, j- k - B,k].

Let j= - (i + k), where i > 0, k > 0. Then, j:5 0. Hence,

C -l[i,k] = 0.

S Substituting - (i + k) for j in the invariant,

I

7

Z[2i +k, -2k]0.

Summarizing the initial conditions,

Xi -j, i + 2J1=A[ijJ,for all ij
14- 2j -k,- k] = Blk,for all j~k

Z2i+k, -i-2k=O,fori O Ic>O.

3.2. Preserving the Invariant
We show how to preserve the invariant when t is increased by 1. First, we

simplify the notation by introducing,

V= i-j and w~j- k.

First consider the data item A[i,j1. From the invariant, it equals Xlv,wl at
t = i+ j +k. It must equal XIv, W- 11 after t is increased by 1. This can be ac-
complished by the assignment,

X[v' W- 1] := XjV'wI.

Similarly, we get the assignments,

Yjv + 1,w] := Yjv,w] and,
ZfV - 1,W + 1] : Z1V'wl + XIu,tvl xYI1V4Wj.

Note that these steps need be carried out only for t,ijk satisfying t =i + j + k, i.e.,
t = (i -) - (j - k) + 3j. We rewrite this condition - weakening it somewhat, to
eliminate ijk - as t =(v - w) mod 3. This results in the following program.

8

Program P1 {for multiplying band matrices)

U initially :

(for al ij:: Xi - j, i + = A[ijl)
(for allj,k:: Y - 2j- k, j- k] = B,k])
(for all i,k:: Z2i + k,- i - 2k] = 0)

assign: (for all v, ur:
(II X[v,w - 1] X[v,wJ

II YV-+1,w] :f YV,w]
llZ[v - 1,w-+ 1] := Z[v,w]-+X[vwjXYvW])

if t = (v- w) mod 3)
IIt t+1

end {P1)

This program represents a systolic array. We have finished a large part of the
design. What remains to be done is to determine the size of the systolic array and the
number of steps required to complete execution.

3.3. Determining Array Size and Number of Steps
Program P1 does not specify the dimensions of X,Y,Z nor the step number t, up

to which program execution should continue. These parameters, and others, can be
deduced from the invariant using the sizes of input matrices A,B as parameters.

Let BA,TA (bottom of A, top of A) have the following meaning: A[i,-] is zero un-R less BA < i - j 5 TA. Likewise, define BB, TB for matrix B. The multiplication in
program P 1 yields a zero if X[v,w] = 0 or Ytv,w] =0 . Therefore, we may restrict v,w to
the range BA < v < TA and BB < w, < TB for computation of the product. Hence, Z
can be dimensioned (BA - 1 .. TA, BB .. TB + 1). Other assignments merely move
the elements of A or B; this corresponds to feeding the systolic array appropriate ele-
ments of A and B.

Next, we determine when and where C[i,k], for any given i,k, becomes available.
That is, we want to find T and v,w such that,

(t =7) -, (Z[v,w] = C[i,k]).

First we determine j such that:

C[i,k] = C7 -'[i,k]. (2)

id

~ This holds when A[i,j- =0 or Bj,k = 0. (A[iij =0 and B[j,k - 0 if j exceeds the
number of columns of A. To eliminate special case analysis , we assume that A,B are
augmented with suitable number of zeros for larger values of j.)

A[ij]fO, forj> 0, if i-j < BA,

B,k] O, for jO, if j- k > TB.

Hence the minimum value of j for which (2) holds is j* given by

j* -min(i- BA, k + TB) + 1

S From the invariant, at T= i + j * + k,

Zi - j*, i* k]: = [i,k].

Note that in case - BA = TB, j* - min(i,k) + TB + 1. Hence the systolic array has a
pleasing diamond structure as given in [1]. However, for arbitrary BA,TB, the structure
is not as regular. We show the relevant portion (i.e., where multiplication is done) of an
arbitrary systolic array in figure 3-1.

The invariant simplified the considerations of initial and boundary conditions and
data flow rates. In this particular example, we imagined that all the elements of
matrices AB are initially placed on certain lines, though the useful work (of
multiplication) is performed in a limited region. Now we consider an example, L-U
decomposition, where such an assumption cannot be made; in fact, the goal of the algo-
rithm is to compute something akin to A,B from C.

4. L-U Decomposition of a Band Matrix
Given a band matrix A, its L-U decomposition is a pair of matrices L and U where

L is a lower diagonal matrix with l's on diagonals and U is an upper diagonal matrix,
satisfying the following equations. (These equations are from [1] with indices renamed
and renumbered starting from 0.)

A°[i,k] = A[i,k]

Ai + '[i,k] = Aj[i,k] - L[iJ1 x Uj,k], j> 0

S0, ifi<j
L~i,3l - (1, if i=j

LAJ[ij3/Uj,jj, if i > j

10

Locus of ,

sN

C.-,

Figure 3-1: Relevant portion of a systolic array for multiplications of band
matrices with BA -3, TA = 2, BB -1, TB 1

UjjkJ = 0, ifj> k

.A'Va,k, if j < k

We adopt the convention that Ai[i,k] = A[i,k], for j < 0. As described in the last sec-
tion, let BA,TA be such that A[ijl = unless BA < i - j:5 TA. It can be shown for
band matrices that

j 1[ikJ = fA[ik], if (i - j > TA) or (j- k < BA)

lAi[i,k] - L[i,jl X Ul, k], otherwise

The form of computation on A suggests matrix multiplication. Hence, we attempt using
the invariant for matrix multiplication, with variables suitably renamed for this
problem. In the following invariant we have constrained certain indices because L is a
lower diagonal and U an upper diagonal matrix.

11

Invariant: ".

t=i+j+k

j>0, i > j, k > i Xti - j, i- k] --L[4) and

>O, i > j, k>j Ii - j, j- k] = U,k]) and

, ~(i > 0, k > 0, i > j, k > j Z i- £j- k]=fiAjlijkJ)
-1

As before, we give initial conditions satisfying the invariant and show how to
preserve the invariant when t is increased by 1. The major difference from matrix mul-
tiplication is that LU, unlike matrix multiplication, are not available initially and have
to be computed.

4.1. Initial Conditions
For t =0, the first two conditions in the invariant are vacuously satisfied because

there are no i,j,k satisfying these conditions. The last condition, for any i > 0, k > 0,
can be satisfied by letting j= - (i + k) and hence,

Z[2i + k, - i - 2k] = AiEi,k = Ali,k] {since j < 0}

4.2. Preserving the Invariant
As before, we use

vfi-j and w-=j-k.

It follows from the invariant that we need only consider the cases for v > 0 and w < 0.

4.2.1. Preserving the first condition in the invariant
We now consider preservation of,

t=i+j+k and j2O,i>j,k>j
X[v,w = L[i,1.

For any ijt where i > j > 0 and t > i + 2j: there is some (v,w), v > 0, w < 0 such I
that, Xlv,w] = Lli JJ.

1 12

We now ask ourselves how this requirement is to be met. If t > i + 2j, L[ijj has
already been computed and has to be assigned to the proper X[v,w]. If t = i + 2j, then

I Li,, is to be computed and assigned to the appropriate Xjv,w].

Case 1) t > i + 2j {equivalently, w < 0}:

SThen, X[v,w]-- L[i=j.

The invariant is preserved by:

XIv, W - 11 := Xv,wl

Case 2) t = i + 2j {equivalently, w = 0}:

F The invariant is preserved by computing L[i,1 according to its defining equation
and then assigning it to the proper variable.

At the following step, i.e., the (t + I)th step, the only k satisfying

t+1 = i+j+k

isk = j+1.

Hence at this step we must have

X[v,- 11 = L[i

substituting for L[il:

Xlv,- 1] :--"{L~i,=A[i,1/U[",1 ifi>j 1 ifsi=j.

From the invariant, at t = i + 2j, A"[ij1 = Zji - j,O.

Alo,att=i+2"{i>jk=J}, 1Ujj IOi-,oJ.

Hence, the following assignment preserves the invariant {i > j is rewritten as v > 0}:

X[v, -1]:= Zv,O/Y[v,O] ifv>O 1 ifv=O.

.A

I

13

Li 4.2.2. Preserving the second condition in the invariant
By similar reasoning we identify two cases.

Came 1) t > 2j+ k (equivalently v > 0}:

'[V+ 1, W]:=Yl1V'u,

Came 2) t = 2j+ k (equivalently v = 0}:

y[1,w] := Aj ,kl

At t = 2j + k, AL, kJ = ZfO,j- k]. Hence,

YI WI :- Z1o,uj

j 4.2.3. Preserving the third condition in the invariant
From the equations,

*1+ 1 j'k ifi-j>TAorj-k<BA

[ik]- L(ijlXUi,k], otherwise

By similar arguments we derive the following assignment to preserve the invariant.

Z[v- 1, w.+.1: {Zv:w--I iv,_owXv,w [fv- TA and w> BA

.11!

,]

14

Program P2 (L-U decomposition of a band matrix}

Initially : t - 0,
(for all i O,k>O: Z2i+k, -i-2k]=A[i,k])

assign : (for all v,ur.:

(II X[v, w -1 :- Xtv,w] if w < 0 - Zv,O]/Yv,OJ if w = 0 and v > 0
- lifw=O and v=O

Yv + 1, w]: Yjv,w] if v > O '- ZO,wJ if v = O

11 Zv-l,w+1 :-- Z[v,wJ-X1v,wJXYJv,w]if v< TA and w>BA
_ Z[v,w] if v > TA or u < BA)

ift=(v-w) mod 3)

t :- t+1

end {P2}

5. Discussion
Programs P1, P2 capture the essence of the algorithms given in [1] for the cor-

responding problems. The multiple assignment statement in each program can be im-
plemented by associating a node with each (v,w) and carrying out the operations in each
step as given by the algorithm. The algorithm tells us that node v,w accepts inputs
along Xiv,w], 11v,w], Z[v,w] and produces results along X[v,w - 11, Yv + i1,w] and
Zjv - 1,w + 1] in each step t, where t = (v - w) mod 3. Some ingenious optimizations
have been applied in [1 so that only one kind of node - that receives three values AB,C
and computes A + BX C - may be used almost completely throughout the systolic array.

This work is part of an ongoing project called UNITY [2,3,4] to provide a unified
framework for the development of sequential, parallel and distributed programs. A
thesis of UNITY is that early stages of program design should not be concerned with ar-
chitectural and programming language issues: these concerns are appropriate only for
later stages of design. Another thesis is that diverse applications - ranging from VLSI
algorithms to communication protocols, from command and control systems to spread-
sheets - are programs and amenable to a common design strategy. UNITY has yet to
give conclusive proof of these theses - but we are hopeful.

VLSI implementations require considerably more than an algorithmic description.
We have only addressed concerns dealing with correctness arguments CM systematic
program development. It is straight-forward to map our programs to circuits with

15

limited fan-in and where each line is directed from one node to one node. However, not
all such circuits can be implemented in VLSI.

1 6. References

1. H. T. Kung and Charles E. Leiserson, "Algorithms for VLSI Processor
Arrays," (Section 8.3) Introduction to VLSI Systems, (ed. Mead and
Conway), Addison-Wesley Publishing Company, 1980.

2. K. M. Chandy, *Concurrency for the Mases", Invited Address: Third An-
nual ACM Symposium on Principles of Distributed Computing, August 1984,
Vancouver, Canada, (appeared in Proceedings of Fourth Annual ACM Sym-
posium on Principles of Distributed Computing, 1085.

3. K. M. Chandy and J. Misra, "An Example of Stepwise Refinement of Dis-
tributed Programs: Quiescence Detection," to appear in ACM Transactions
on Programming Languages and Systems.

4. K. M. Chandy and J. Misra, "Programming and Parallelism: The Proper
Perspective", Research Report, Computer Sciences Department, University
of Texas, November 1985.

5. C. Leiserson, F. Rose, and J. Saxe, "Optimizing Synchronous Circuitry by
Retiming", Third Caltteh Conference on VLSI, (ed. R. Bryant), California
Institute of Technology, March 1983, pp. 87-118.

6. G. J. Li, And B. W. Wah, "The Design of Optimal Systolic Arrays", IEEE

Transaction. on Computers, C-34, No. 1, January 1985, pp. 66-77.

7. Marina C. Chen, "A Parallel Language and its Compilation to Multiproces-
sor Machines or VLSI", Research Report, Yale University, DCS-RR-432, Oc-
tober 1985.

8. Marina C. Chen, "The Generation of a Clas of Multipliers: A Synthesis
Approach to the Design of Highly Parallel Algorithms in VLSI", Research
Report, Yale University, DCS-RR-442, December 1985.

I.

I
I

1* -.

